Counter with ROM

50

Counter with ROM Lab

Introduction

ROM is effectively just another way of defining the lookup tables in the XC4000 family. It can
be very convenient to use for ROM-like transfer functions. In this example, the outputs of a 4-bit
counter will be used to address a 16-word ROM. The 16-word ROM in turn will drive the row of
8 LEDs on the demo board. An advantage of using ROM is that you can define the light pattern
directly.

This lab was originally designed for XACTstep v6.0. This lab has been converted to use
LogiBLOX and M1 rather than an older tool called MemGen. This lab will demonstrate the use

of LogiBLOX and the ability to modifiy a text file to control an LED light sequence stored in a
ROM table.

Objective

* To understand how to integrate ROM into an XC4000 design.
* To practice using the LogiBLOX utility.

Procedure

This design replaces the 8-bit counters we’ve used with a 4-bit counter, since we will only use 16
words of ROM. The ROM effectively converts the binary counter output into any desired
sequence. It would be more effective, in most cases, to put this decoding logic in front of the
flip-flops, allowing the flip-flops themselves to generate the desired output function.

1) Invoke the Foundation Project Manager.

2) Select Project — Open Project...

3) Gotothe C:\ F15_| abs\ Menor y directory and select the COUNT project.

4) Since this design was originally created to target an XC4003E device and we want to target
the XC4005XL, let’s change this. Most Unified library macros and primitives are common
across several product families, so converting device targets is easy. Switching designs
between various XC4000 sub families is almost always quite simple. In other cases, minor
changes might need to be made, and the online Libraries Guide provides good information
about what families all of the Unified Library macros support..

In Foundation Project Manager, click the Design Info box.

Under Project Info, change the Family, Part, and Speed settings to XC4000XL,
XCA005XLPC84, and 3, respectively. Click <OK>.

51

5) Select the Schematic Editor.
Note that there are pin locations shown as attributes on the several I/O Pads. However, the
pin assignments in the COUNT.UCEF file, which are specific to the XS40-005XL and
XSTEND boards, will take precedence over the settings in the schematic.

6) Note the symbol for the ROM function following the counter. Select this symbol so that a
red selection rectangle surrounds it. Click the Disconnect Symbol icon. ﬂ
Hit the <Delete> key to delete this previously created ROM module.

7) Select Options —» LogiBLOX... Your LogiBLOX Module Selector window comes up. We
will create a 16x8 ROM module called “MYROML”.

8) Under Module Name, type MYROML. Under Module Type, select Memories.
Choose the ROM radio box.
Type Memory Depth = 16. Data Bus Width = 8.
Type Mem File = MYROML. MEM This will create a text file for you which contains the
contents of your ROM table.

H; L Bl 15 sl Sulacion

Seleckon
- Wodule Tope: paaBaiite |
T— I e

Dﬂ.*n...“,,....ﬂ
= s |

= RDM ™ s SYMC_RAH ™ [P_RAM

Mencry Qlegin = |16
i Fi = [rrevon men |] '||
E T |F-:I:e- "'|

9) Edit your ROM file by clicking on the Edit button.

52

10) As shown in the comments section of this text file, you need to enter 16 words of 8-bit wide
data. Note that the default is HEX, Radix 16, and that any space, tab, comma, or return will
be treated as the division between each of the 16 words. Try to come up with an interesting
light pattern. If you like, you can try the following:

RADI X 16
DATA

0:00, 1:11, 2:22, 3:43, 4:84, 5:45, 6:26, 7:17
8:08, 9:19, A 2A B:4B, C 8C, D: 4D, E: 2E, F:1F

(You can also cheat by copying the completed myr oml. memfile at
c:\ F15_I abs\ short cut\ nmenor y\ count \ nyr omlL. nem.into the current project
directory of ¢:\ F15_1| abs\ menor y\ count \ myr oml. nem.)

11) Exit your text editor and save this new file as a Text document.

12) Return (<Alt>+<Tab>) to your LogiBLOX Module Selector. It is also helpful to put the
LogiBLOX GUI Messages window in view now also so that you can watch LogiBLOX
compile this module into an EDIF netlist.

Note: We will not do this in this lab, but if you wanted to instantiate this custom LogiBLOX
macro into a VHDL design instead of into a schematic, you could click <Setup> under the
LogiBLOX Module Selector window, click the Options tab, and check the VHDL options
to create a Behavioral VHDL Netlist and a VHDL Template.

13) Select <OK> in the LogiBLOX Module Selector window. Your module, MYROM, has
now been created. When done, a message should come on screen saying, “LogiBLOX symbol
myroml successfully put into library.”

If LogiBLOX did not compile, you should first check in your Windows Explorer to make

sure that the text editor did not append a suffix to the memory contents file name when it was
saved. It should be named MYROML. MEMand not MYROML. MEM t xt .

14) Go to the Foundation Schematic Capture window. We will now insert this module into the
design.

15) Click on the Symbols Toolbox icon to pull up a symbol.

16) Type MYROM Once MYROMis highlighted in the SC Symbols window, you can place the
symbol in the middle of your schematic above where the previous ROM block had been
located.

Hint: Place the MYROMsymbol so that the bottom of the symbol is above the top of the
CB4CLED outputs, as shown in the diagram, Figure 1. This will make it easiest to connect
wires to the bus taps in the next step.

53

If the MYROMsymbol does not appear in the Symbols Toolbox, these are the most likely
causes:
* Your project library’s Access Mode is set as Read Only (R/O). This can be changed in
the Library Manager utility.
* An error or incorrect directory was used when creating MYROM
* You need to update your project libraries to include the LogiBLOX module by
selecting File - Update Libraries.)

17) Delete any hanging nets from the CB4 CLED symbol.

18) Create an address bus: Click on the Draw Busses icon. Start at the top left and draw a bus
called ADDR[3:0], with I/O marker of None.

19) Connect the Q0..Q3 output taps of CB4ACLED to this bus.
Hint: Select the “Draw Bus Taps” icon, click on the ADDR][3:0] bus name once. Then
notice the message on the bottom of the screen saying “Expand Bus Tap: ADDR3”. Then
click once on each output tap QO through Q3, i.e. from LSB to MSB. Tap to Bus
connections are made automatically.

20) Connect the output bus of your ROM symbol to bus (0 7: 0] directly. Delete individual
wires, or bus taps, hanging from the bus.

21) Name your ROM symbol by double-clicking on it and setting the Reference to some name
such as ROM_16. Click <OK>. Your final schematic should look similar to Figure 1,

below:
CE4CLED 1 |
{

] | _RGaEn
BlLs_WIDTH=2
o o | Ll — =
RO
L [) T
ik] al Ari
11
L
- _
Figure 1

22) Save your schematic and return (<Alt>+<Tab>) back to Foundation Project Manager.

23) Click on Implement M1.

54

24) Select Design = Implement... = Run to compile your design. Make sure the Produce
Configuration Data box is checked to be able to test your design.

25) When finished, download the design. Does it operate as you expected?
Note that in the User Constraints File (c:\F15_labs\memory\count\count.ucf) that these
switches control the operation of the ROM counter:

NET UP_P LOC=P7; # DIPSW > Up (1)
NET CLKEN_P LOC=P9; # DIPSW8 = Up (1)
NET NOTCLR P LOC=P6; # DIPSWI > Up then Down (1 -> 0) to clear

If you have time, you can create a new memory file, or just modify your existing file and re-
implement with the new pattern.

26) Based on the size of the ROM, how many CLBs should this ROM require? Examine the
Placement Report. How many CLBs were required in the entire design?

Optional — Timing Analyzer

27) Now we will look at the performance of the ROM, including specific net delays by filtering
out everything but the inputs and outputs of the ROM block.
In the Design Manager, highlight the implemented revision. Then select Tools — Timing
Analyzer, or click the corresponding icon instead.

28) Select Path Filters — Custom Filters — Select Sources... . Choose Selected Sources of
type Net s. Highlight ADDR<O> to ADDR<3>, and click the move button ‘>’ to select these
sources. Click <OK>.

29) Similarly, select Path Filters — Custom Filters — Select Destinations... and select only
O<0> to OK7> as the destinations.

30) Note that under Options — Report Options..., that the maximum Paths per Timing
Constraint is set as ‘1.

31) Now select Analyze — Custom. This will do a timing analysis on only the sources and
destinations we have chosen.
What is the worst case address access time of the ROM (T 0)? .oovvvevvvveevieenneenns
What is the total worst case delay including nets?c.cccceenneee.

55

Answers

How many CLBs should this ROM require?
Each CLB can hold 16x2, so 16x8 requires 4 CLBs. The entire design required 7 out of
196 available CLBs.

What is the worst case address access time of the ROM (T 0)?
1.59ns
It is one level deep, so the max delay is the same as the block delay, 1.6ns in the
XC4000XL-3, according to the 1998 Xilinx databook, p. 4-74 — “F/G inputs to X/Y
outputs” ratings. A ‘09’ speedgrade would improve the time to 1.2ns.

What is the total worst case delay including nets?

Approximately 14.4ns. This will vary since the actual routing affects this value. See the
Timing Analyzer report, as shown below.

Ti ming Anal yzer ML.5.19

Copyright (c) 1995-1998 Xilinx, Inc. Al rights reserved.

Design file: c:\f15_I abs\ menor y\ count\ xproj \ ver 2\ rev1\ count. ncd
Devi ce, speed: xc4003e, -4 (x1_0.95 PRELI M NARY)

Report |evel: verbose report, linmted to 1 item per constraint

Ti mi ng constraint: PATH "PATHFI LTERS" = FROM TI MEGRP " SOURCES" TO Tl MEGRP

" DESTI NATI ONS" ;
32 items analyzed, O timng errors detected.
Maxi mum delay is 14.393ns.

Pat h ADDR<O> to QUT<5> contains 1 |evel of |ogic:
Path starting from Conp: CLB R6Cl. YQ

To Del ay type Del ay(ns) Physical Resource
Logi cal Resource(s)
CLB_R7Cl. G3 net (fanout=11) 2. 555R ADDR<1>
CLB_R7CL. Y Tilo 2. 700R Ox4>
L1/ MEMB_O
P81. O net (fanout=1) 9.138R Ox5>
Total (2.700ns logic, 11.693ns route) 14. 393ns

(18.8% Il ogic, 81.2%route)

56

