RAM Lab - CALC

57

RAM Lab - CALC

Introduction

The XC4000 version of the CALC design can implement a stack in the form of Look Up Table
(LUT) -based RAM. This reduces the CLBs from more than eight to only two, since many more
bits can be stored per CLB in RAM rather than flip-flops.

Objective

* Show how to include RAM in a schematic.

* Demonstrate the logic resource efficiency obtained using LUT-based RAMs vs. RAMs in
flips-flops.

* Demonstrate the Calculator design.

Procedure
1) Examine the design using RAM in the CALC project in the C: \ F15_| abs\ nenory
directory by invoking the Foundation Project Manager. Start = Programs - Xilinx

Foundation Series - Xilinx Foundation Project Manager.

2) Open the CALC project: Select File = Open Project... . Browse to the
C.\ F14_| abs\ nenor y directory, click the CALC project, and select <Open>.

3) Select the Schematic Editor.

4) The RAM is used under the STACK 4K macro. Select the Htoolbar icon and then double-
click the STACK 4K symbol. You can go back up a level by double-clicking in empty space.

Note that we used the standard RAML6X4 macro but we tied two of the address lines high to
make it effectively 4X4. The depth was limited to keep the register-based version at 16 flip-flops,
but with RAM there would be no penalty extending the depth to the full 16 words available per
lookup table.

5) Examine the results from the implementation process.
6) Go back to Foundation Project Manager (<Alt> + <Tab>) and select Implement M1.

7) This design has already been implemented so it not necessary for you to do so. However, you
should look at the implementation reports. Select Utilities = Report Browser...

8) Double-click the Place & Route Report. How many CLBs are being used?

58

9) Go back to the Foundation Schematic Editor.

10) Select File = Open = Browse>> C: \ F15_| abs\ fl ow\ cal c\ cal c. sch <OK>to
view a different, non-RAM based design which otherwise is identical to the design we are
working with. Remember now you have two schematic windows open and they both have
the same name. One is in your project directory and the new one from another design
directory. Be careful to remember which schematic window is which.

11) Select the H toolbar icon and then double-click the STACK 1 symbol. You can go back up
a level by double-clicking in empty space. Note that this design is done using standard logic
library elements, not RAM.

12) Return to the M1 Design Manager and select File & Open Project... Find
C.\F15 | abs\fl ow\ cal c\ xproj\cal c. xpj and select <Open>.

13) Browse the reports : Open the Place & Route Report. How many CLBs are being
used?

14) The CLB reduction probably seems higher than you may have expected for the removal of 16
flip-flops. What would explain this large reduction in CLB count?

15) Download the design to verify the same functionality. Make sure you test the stack function.

Note: Synchronous RAM is being used in this design. The only timing requirements that need to
be met are that the data, address, and write enable need to be set up before the clock edge. In the
original design, the WE was delayed until two clocks after the cycle EXC goes high. This
allows EXC to enable the address counter, the address counter to change on the next clock, and
then the WE to be activated on the next clock. With synchronous RAM, the WE can be set up
at the same time as the address counter so that both will be available at the next clock edge to
write into the RAM.

59

Answers

How many CLBs are being used in the RAM based design?
How many CLBs are being used in the non-RAM based design?

The RAM-based stack is 2 CLBs (both 16x2, although only four of the addresses are being used).
The register-based stack design takes 19 more CLBs, so it must require 21 CLBs for the stack.
This includes 8-16 CLBs for the 16 flip-flops, 2-4 CLBs to generate the four clock enables, and 4
CLBs to mux the four outputs. The flip-flops and enables have a CLB range because they could
be placed one per CLB or two per CLB.

60

