Three Mode Design Flow Lab

71

Three Mode Design Flow Lab

Introduction

This lab uses the WATCHNEW project to demonstrate how a project can be designed using
multiple design entry techniques of schematic, state diagram editor, and FPGA Express
VHDL synthesis. Foundation Series Express uses XNF (Xilinx Netlist Format) and EDIF
files as the default netlist formats. These netlists are optimized and implemented in the M1
software.

Objective

After completing this lab, students will be able to:

* Implement and optimize a design with the Foundation Series Express software

* Use the State Diagram Editor outputs and synthesize the resulting VHDL using Express.
* Use LogiBLOX to create a custom module.

* Combine the design entry components into one schematic top level design.

About the WATCH project

The WATCH project is designed to be a track coach’s stopwatch. There are two inputs to the
system (RESET and STRTSTOP). The configuration clock on the FPGA 1is used as a ten-
hertz clock signal. However, since the internal XC4000 oscillator port, F15, is usually closer
to 15 Hz rather than 10 Hz, the actual stopwatch may run slightly fast. Three seven-bit
outputs are generated by this system for output to three seven-segment displays.

Procedure

Opening a partially created project in Foundation Series Express

1) Start Foundation Series Express by clicking on Start = Programs - Xilinx
Foundation Series - Xilinx Foundation Project Manager

2) Select File = Open Project..., browse to c: \ F15_| abs, select wat chnewand click
Open.

3) Click once to open the Schematic Editor.
You will notice a partially completed schematic. We are going to develop each of the
blocks so that we finish with a design that looks like Figure 1, below:

72

-Il'

e Lot r,_ LELA w
g EENT e ML
LieC=P 2B TR
T ""H_'I.EI:I'__E;,_
I._" Wi ETATHACH
TeE WTHTETOE [[
T=F1h I"ll\.ll I":?
- I- -
- oo p—
TENTHE
. BUS WIDTH=10
£ TR . T 1 -
R COUNTER :
sl 'I.E o) L Llie -]
L
- SARIET by pym TERmCHT HEXILED

- I OMES[3:0]
1 L . R
= i mr | QLITED

AR TEMEZ0] pr TERSOLIT]E: O]

ERETHELD)

HEX2LEL
Figure 1
Creating a custom schematic macro using Express and VHDL synthesis
First, we will convert the 8-bit binary outputs from the CNT60 macro into two 7-segment
LED signals using VHDL code which we will instantiate into the schematic. This VHDL

code has already been written.

4) Open FPGA Express by clicking on Start = Programs - Xilinx Foundation
Series > Accessories 2 Foundation Express.

5) Once inside Foundation Express, click on File - New...

6) Gotothec:\F15_| abs\ wat chnewdirectory. Enter the name of the project as
WATCHHEX and click on the Create button. When asked to identify sources, click on the
Cancel button.

7) Once the Foundation Express Project Window opens, click on the WATCHEX project
name in the Design Sources window. Then click on the command: Synthesis >
Identify Sources... Go tothe c:\ F15_| abs\ wat chnewdirectory, select the
HEX2LED.VHD file, and click on the Open button. Express will check the file for errors,
and should not find any.

8) To view this code, you can highlight hex2| ed. vhd under the Design Sources window,
right-click on it, and select Edit File. When done viewing, close the VHDL text editor.

73

9) In the Design Sources window, double-click on hex2| ed. vhd, and the entity
hex2l| ed will be expanded below. Highlight hex2l| ed. Select Synthesis = Create
Implementation. (Alternatively, you can click the Create Implementation icon .)

10) Since we are not creating a top-level VHDL design, eg. this will be a module within our
schematic, check this box ¥ Do natinsert 140 padz SO that module ports, and not chip-
level I/O pads, are created. Also, make sure that the target
device, XC4005XLPC84C -3 is selected for proper optimization. Click <OK>.

11) Highlight hex2led under the Chips window, and select Synthesis = Optimize.

12) Highlight hex2led-Optimized and select Synthesis - Export Netlist. Accept the
directory to Save in as C. \ F15_| abs\ wat chnew, and click <Save>. This creates
two files.

- hex2l ed. xnf , the Xilinx Netlist Format file containing module netlists
- hex2l ed. xsf, the Xilinx Symbol File used next to create a graphical symbol.

13) Return to the Schematic Editor (aka. Schematic Capture) application.

14) Now we will create a macro symbol from the VHDL code that we just synthesized. Select
Hierarchy - Create Macro Symbol from Netlist. The directory location,
c:\ F15 | abs\ wat chnew, should be correct.

15) Since we are looking for an XNF file, select Files of type as Xi | i nx
(*. XN+, *. BAX) , and then select hex2| ed. xnf . Click <Open>.
Schematic and black box simulation files are created, and HEX2LED is added to the
project library.

16) To prove this, from Schematic Editor, select File = Project Libraries, and click Lib
Manager. Look for the current project name, WATCHNEW on the left. This is shown as
a User, rather than a System library. Highlight WAT CHNEW(making sure you have the
right one according to the path shown) and then click on the Objects tab. There you
should notice that HEX2LED is listed as an object within this project’s custom macro
library.

17) Exit out of the Library Manager, exit from the Project Libraries box, and return to the
Schematic Editor.

18) Open the Symbols toolbox, find the HEX2LED macro, and add two instances of the

macro to the schematic as shown in the completed schematic diagram in Figure 1.
Connect the busses directly using the Draw busses icon.

74

Creating a custom schematic macro using State Editor and Express

Next, we will create the state machine block using the State Diagram Editor in Foundation
Series. The State Diagram Editor allows you to create a graphical state diagram, then
automatically generate the corresponding VHDL or ABEL code, which can then be
synthesized and used as the contents of a macro.

In Foundation Series Express 1.5, the flow is completely integrated when using the ABEL
synthesis option. For VHDL and Verilog synthesis we will use the Synopsys-based FPGA

Express tool to complete the flow.

19) Go to the Foundation Project Manager window.

20) Click on the State Editor icon.

21) To save time in this lab, we will use a state diagram that has already been created. Select
Open Existing document and <OK>.

22)Select St at mach. asf (under C: \ F15_1| abs\ wat chnewdirectory) and click
<Open>. You will then see the state machine diagram. Notice that the state actions
include VHDL style assignments, such as cl kout <= ‘0’ ;

23) Select Synthesis = Configuration... and notice that the language option is VHDL, and
the tools is XVHDL. Select <Cancel>.

24) Select Synthesis = Options and check to see that this is setup to create a Macro rather
than a Chip level output. It should be correct, so select <Cancel>.

25) Select Synthesis > HDL Code Generation .

26) That was quick! Select <Yes> to view the generated code.

27) Close the HDL Editor and move to the already opened Foundation Express Project
Manager.

28) Create a new project to synthesize the recently generated VHDL code: File > New...

29) Select directory of ¢: \ F15_I| abs\ wat chnewand type project of wat chst , click
<Create>.

30) Under the Identify Sources window, select St at mach. vhd <Open>.

31) Under the Design Sources window, highlight St at mach. vhd. You will see several
errors that FPGA Express found in its initial VHDL code analysis. You will find errors in
the State Diagram code to be consistent, and therefore easy to fix.

75

32) Let’s fix the errors manually now. The errors relate to problems in the library
declarations. We will also improve synthesis performance by making some other
optional code modifications.

With St at mach. vhd highlighted, right-click, and select Edit File.

There are two ways to correct the errors. The easy way is to simply copy over the pre-
corrected file from C. \ F15 | abs\ short cut\ St at nach. vhd to

C.\ F15_| abs\ wat chnew\ St at nach. vhd.

The harder way, which will teach you something, is to correct your existing code and re-
save the resulting file. Let’s try the harder option, but if your prefer, you may resort to the
easier option.

27) Change this code

-- SYNOPSYS library decl aration

i brary SYNOPSYS;

use SYNOPSYS.std logic_arith.all;
use SYNOPSYS. std_Il ogi c_unsi gned. al | ;

library METAMOR,
use METAMOR ATTRI BUTES. al | ;

to this:

-- SYN_OPSYS library declaration

-- library SYN OPSYS;

-- use SYNOPSYS.std logic_arith.all;

-- use SYNOPSYS. std_| ogi c_unsigned. al | ;
use |EEE. std logic_arith.all;

use | EEE. std_Il ogi c_unsi gned. al | ;

-- library METAMOR,
-- use METAMOR. ATTRI BUTES. al | ;

All we really did was remove the references to Metamor, and set libraries to IEEE libraries
rather than Synopsys standard libraries.

Since Synopsys is a recognized keyword called a VHDL “pragma”, you can delete the first
two lines, or just modify the word to SYN OPSYS, as in the example text above.

28) Exit the HDL Editor and save your changes: File 2 Exit, <Yes>.

29) Return to FPGA Express, highlight St at mach. vhd, right-click, and select Force
Update File. You will see a green #-Br checkmark, meaning that the file
checks out OK.

76

30) Double-click the St at mach. vdh file (or click once on the “+” sign) to expand the
source to its component, St at mach.

31) As we did for the HEX2LED macro, select Synthesis = Create Implementation.
Again, make sure that the Target device is XC4005XL-3PC84, and check the box for
‘Do not insert I/O pads’. Hit <OK>.

32) Under the Chips window, optimize your chip design by selecting Synthesis = Optimize
Chip.

33) Select Synthesis - Export Netlist... The default directory of
C.\ F15_| abs\ wat chnewis fine, so click <Save>.

34) You can exit FPGA Express now and return to the Foundation Schematic Capture
window.

35) Now we will create a macro symbol from the VHDL code that we just synthesized. Select
Hierarchy - Create Macro Symbol from Netlist. The directory location,
c:\ F15_I abs\ wat chnew, should be correct.

36) Since we are looking for an XNF file, select Files of type as Xi | i nx
(*. XN+, *. BAX), and then select st at mach. xnf . Click <Open>.
Schematic and black box simulation files are created, and STATMACH is added to the
project library.

37) Open the Symbols toolbox, find the STATMACH macro, and place one of these new
macro symbols in the schematic. Place it near the top of the diagram so that the three
input pins are just touching the hanging nets, as shown in this picture:

13

ANF wetlet
LK ZLEOUT]

CLE_INT -

4 REZET RET|—

£ TRT=TOP

STATMACH

—Io—

INW

38) Then click once on STATMACH to select it. A red box surrounds STATMACH.

39) Connect the symbol using the Connect Symbol icon. Iﬂl

40) You still need to connect the 2 output lines. RST_| NT connects to the RST output and
the unnamed net connects to the CLKOUT output, as shown in Figure 1.

77

Creating a custom schematic macro using LogiBLOX

41) We still need to create the counter in the center of Figure 1. Although we could use any
of several existing counter macros, a custom counter will provide exactly what we need
for this particular design. We want a counter with asynchronous control, terminal count,
and 10 one-hot style outputs. We’ll use LogiBLOX to create this.

42) In the Schematic Editor, select Options = LogiBLOX...

43) Under the Module Name, type TENTHS. Under Module Type, select Counters. Under
Bus Width, type 10.

44) Select the <Setup> button, choose the Device Family tab, and make sure that the
xc4000x1 has been selected. Click <OK>.
(Note: If we were planning to incorporate this LogiBLOX module into a VHDL design,
we would also go into the Options tab and check the boxes to create a Behavioral VHDL
Netlist and a VHDL Template.)

45) Set the other attributes as shown in the diagram below. Note that the Async. Value,
which is the state value upon startup, is an explicit 10 digit entry, ‘0000000001°.

46) Make the LogiBLOX GUI Messages window visible so that you can watch the software
complete its task. In the LogiBLOX Module Selector window, select <OK>, and let
LogiBLOX create the custom macro.

*HLogiBLDX Module Selector =T S |

— Selection

M odule M ame: Module Type: Bus Width:

ITENTHS j I Counters j I'I 1 j Cancel
— Details Setup

D_IN [[/ 0_OUT zer Prefs

rlik

Help
Agunc. Contral v —

Sume. Contral [
Clock Enable v —
Clock — —— [v Teminal Count
Operation = |L||:| j
Stule = IMaHimum Speed j
Encoding = IEIne Hat j
[Eatrt it = I

dsyne. Yal = 0000000001

S tEl = |

47) Place the TENTHS macro into the middle of your schematic. Make sure to place it so
that the individual pins match the position of the existing nets. Select the new macro so

78

that a red box surrounds it, and then click the Connect symbol icon. (You may still have
to manually connect the bus output to the TENTHSOUT[9:0] bus.)

48) If you wish, you can make your macro look ‘prettier’ by double-clicking the macro,
changing attributes such that the Symbol Name is visible, by moving the Symbol Name
and/or parameters, etc.

49) Save your new schematic and return to Foundation Project Manager.

Note: The schematic explicitly set certain pin locations for input and output pins, for
example, the pad connected to net RESET is shown with LOC=P28. These pinouts
apply to the UW-FPGABOARD. But since we are using the XS40 and XSTEND boards,
different pad locations have been defined in the WATCHNEW UCF file. Settings in the
UCF file take precedence over attributes in the schematic design. To see the UCF file,
double-click on WATCHNEW UCF on the left side of the Foundation Project Manager.

50) Click the “Implement M1” button.

51) Implement the design. When finished, download to the demo board. Use the SPARE
button for the STRTSTOP input and the SW8 switch Reset. Set SW8 high to reset the
stop watch.

52) You will probably notice that the stopwatch mostly works. However, when you start and
stop the stopwatch, it seems to reset. Why is this?
The reason is that there is a glitch in the asynchronous ‘rst’ circuit of the STATMACH
state machine that was generated. This is a common danger with HDL design.

Note the code below:

rst <= '0" when (stopwtch = counting) else
0" when (stopwtch start) el se

"0" when (stopwtch stop) el se

when (stopw ch st opped) el se

when (stopw ch zero) else

e x=k=Ke)

In this portion of the code, one can see that the r St net could go to ‘1’ if there is a glitch
in the state machine control outputs. This bug was fixed in the

C.\ F15_| abs\ short cut \ wat chnew\ St at mach. vhd version of the design by
replacing the code above with the following VHDL code:

- Keep rst as 1 all the tine except for beginning to prevent glitches.
rst <= '1' when (stopwtch = clear) else '0";

79

Conclusion

In this lab, the three different design entry modes were used — schematic, state editor,
and Express for VHDL synthesis. The top level design was a schematic. Various ways of
creating custom design components were used and integrated into one design.

Optional — Using State Diagram Editor with the ABEL Option

Modity your existing design using ABEL instead of VHDL for the STATMACH state
machine output. This flow is more integrated, and is similar to what the state editor &
VHDL flow will be like in version F1.5.

1) Open the State Editor tool and select St at mach. asf as your design file.
2) Choose Synthesis > HDL Configuration. Set this to ABEL language. <OK>

3) Since the state transition and signal output constructs are defined in the state editor in
VHDL syntax, you must manually change each text box in the diagram.

Syntax VHDL ABEL
Assignment operator <= =

‘Is equal to’ comparator = ==

For example, changereset =" 1’ toreset= =" 1’ to match the ABEL syntax. Do the
same for all other text in the diagram.

4) Save the revised st at mach. asf file.

5) Select Synthesis > HDL Code Generation.

6) Select Synthesis > Synthesize. This will synthesize your generated ABEL code using
the ABEL HDL synthesizer.

7) Select Project > Create Macro.

8) Go into the Schematic Editor and add this new macro to your schematic.

9) Continue with implementation and download.

80

