Multiplier Core VHDL Lab

82

Multiplier Core VHDL Lab

Introduction

The purpose of this lab is to demonstrate the use of cores in chip-level VHDL designs. Cores
are customized, parameterized macros that are used to develop higher complexity designs,
with maximum performance, minimum CLB usage, and most importantly, much lower
design time.

Objective

After completing this lab, students will be able to:

* Use Xilinx CORE Generator to create a custom module.

* Instantiate a custom macro based on a core into a VHDL-based design.
* Understand importance of linking and hierarchy in VHDL designs.

Procedure

Create a new FPGA Express Project

1) Start Foundation Express by clicking on Start = Programs - Xilinx Foundation
Series = Accessories = Foundation Express

2) Once inside Foundation Express, click on File = New...

3) Browse to the C: \ F15_| abs\ cor es\ vhdver directory, and type “cor v” in the
Name: edit box. Click <Create>.

4) In the Identify Sources window, click <Cancel>. Notice there is now a project created,
but no sources have been identified.

5) If you were really creating a new design, you would probably create your own VHDL
code. To save time, let’s assume that instead you will copy the source VHDL code. This
has been done, so that there are already some *.VHD files copied into
C.\ F15_| abs\ vhdver directory.

6) Highlight WORK under the Design Sources window. Select Synthesis =
Identify Sources..., or just click on the + symbol to add sources.

83

7) Select Xi vhd. vhd under the default directory C. \ F15_| abs\ cor es\ vhdver, and
click <Open>. FPGA Express does syntax and other preliminary checks.

8) Double-click xi vhd. vhd to expand the two entities within Xi vhd. With xi vhd. vhd
highlighted, right-click and select Edit File to view the VHDL code.
You can compare this design to the schematic C. \ F15_| abs\ cor es\ schver . pdf
and note the similarities. One significant difference between the two designs is that the
VHDL code does not explicitly define IBUFs for all of the switch and parallel port inputs.
That is because the FPGA Express tools automatically generate proper buffers according
to the design in an automatic process called IO synthesis.

Instantiate a VHDL Core using Xilinx CORE Generator

9) Open CORE Generator: Start = Programs - Xilinx CORE Generator > CORE
Generator.

10) Under the Core Generator Options window, check EDIF Implementation Netlist and
VHDL Instantiation Template as the output products. Click <OK>.

11) Under the CORE Generator v1.5.0 window, select Options = System options... and
type in the Project Path “C: \ F15_1| abs\ cor es\ vhdver ”. Click <OK>.

12) Double-click to expand the directories in this order: LogiCORE - Math - Multipliers.
Double-click Parallel Multiplier — Area Optimized.

13) Type “mul 6x6” under Component Name. Set A and B input bus widths to 6 and 6.
(Even though we are going to build a 4x4 multiplier, the smallest component available is
6x6.) Select Unsigned.

14) Click <Generate>. This creates several files. Mul 6x6. vhi is the VHDL file
instantiation file. Mul 6x6. vhx is the simulation template. Mul 6x6. xnf is the
underlying Xilinx Netlist File which will be included in the flattened project netlist for
implementation, later.

15) Open Windows Explorer (or NT Navigator) and find Contanis ol T:\F14_labr\cons v

C.\ F15_| abs\ cores\ vhdver\ mul 6x6. vhi . h.ame | Simm|
Highlight this file, right-click it, and select Open With... j:ﬁ i XB
Find WORDPAD in the list of applications, highlight it, and 1EE
click <OK>. St e
Notice that there is a component initialization followed by a | &jmes. riTo " R
component instantiation for mul 6x6. Highlight the :::.;1:1 o e
following text from within mul 6x6. vhi : Cogw

84

conponent mul 6x6 port (

a: IN std_|logic VECTOR(5 downto 0);

b: IN std_Il ogi c_VECTOR(5 downto 0);

c: INstd_|ogic;

ce: IN std_|ogic;

prod: OUT std_| ogi c_VECTOR(11 downto 0));
end conponent;

16) Once it is highlighted, copy this text by holding <Ctrl> + <C> on your keyboard (or Edit
- Copy).

17) Go to the HDL Editor that shows the xi vhd. vhd VHDL code. You should paste
(<Ctrl> + <V>) the instantiation text below this line,

architecture str_xivhd of xivhd is

and above this line,

conmponent OSC4 port (

Make sure not to accidentally paste any non-ASCII characters (they look like ‘07 or ")
into the VHDL text file.

18) We also need to add an instance of the multiplier core to the VHDL code. Add the
bolded lines, as shown below, between the osc and togmux lines. Note that the specific
port names differ slightly from the instantiation code generated from the CORE
Generator. This is done in order to maintain consistency with the net names in the
corresponding schematic version of the design.

osc : OSC4 port map(F15 => clk);

mul : mul 6x6
port map (Ain, Bin, clk, ce, prod(7 downto 0) => PROD);

tognux : process(LNE, PRAA, PRBB3, PRBB2, PRBB1l, PRBB0, SWAA,
SV\BB)

19) If you have any trouble with steps 17 or 18, you can just copy the correct, edited file from
C.\F15_| abs\ short cut\xi vhd. vhd to
C.\ F15_| abs\ cores\ vhdver\ xi vhd. vhd.

20) Select File - Save to save the modified VHDL file.

21)Back in FPGA Express, highlight Xi vhd. vhd, right-click, and select Force Update
File to re-analyze the changes.

22) Since Xi vhd is the top-level design, highlight this component, as shown below.

85

Design Sources

El--%l Cory

=8 WORK

23) Then select Synthesis - Create Implementation. Since this is a complete VHDL
design, eg. Top-level VHDL design, leave “Do not insert I/O pads” unchecked. Make
sure the Target device is XC4005XL-3PC84. Click <OK>.

You will notice some warnings, especially indicating that some of the mul6x6 module’s
nets are not linked. This is OK, since we only are connecting inputs for a 4x4 multiplier,
rather than a 6x6 multiplier.

24) Under the Chips window, highlight xi vhd, right-click, and select Optimize.Chip. At
this point, FPGA Express should look something like this:

Design Sources Chips
= corv -l wivhd [l > CA000: 005X PCE4x-3)
-3 WORK =58 sivhd-Optimized [ilins+<C4000:4005<LPCE441-3)
=By C:AF14_labshcores\Whdverswivhd vhd 48 sivhd
I ledec
A wivhd

25) Right click on xi vhd- Opt i m zed and select Export Netlist. Make sure you go up
one to the top directory, C: \ F15_| abs\ cor es\ vhdver . Click <Save>.

Creating and Implementing the new project in Xilinx Design Manager

Now that the complete VHDL design has been designed and synthesized, we must implement
the netlist into the Xilinx device. Although pin location constraints could have been included
in the FPGA Express constraints editor, we have set up pin location constraints in a *.UCF
file in advance. So, let’s open a new project and implement our design.

26) Start = Programs = Xilinx Foundation Series = Accessories > Design Manager.

27) Select File = New Project...

28) Under Input Design, browse to find C. \ F15_| abs\ cor es\ vhdver\ xi vhd. xnf .
Select this and choose <Open>, then <OK>.

29) The rest is simple. Highlight Xi vhd in Design Manager, select Design Implement.

86

30) We want to make sure that the proper UCF file is being used, so click <Options...>. The
User Constraints window should show
C.\F15 | abs\ cores\vhdver\ xi vhd. ucf.

31) Click <OK>. Check that the right part is targetted (XC4005XL-3-PC84). Click <Run>.

32) When finished compiling, download the
C.\ F15_| abs\ cores\ vhdver\ xi vhd. bi t bitstream and test the multiplier to
make sure it works in both the XSPORT mode, in which A and B 4-bit inputs come from
the PC’s parallel port, as well as the Switch mode, where A and B inputs come from the
8-bit switch.

Conclusion
In this project,we created a core using CORE Generator, and instantiated it into the

VHDL code. The design functions identically to the schematic version of the multiplier
design.

87

