IMPLEMENTING a
DEMODULATOR
using the

XILINX CORE
GENERATOR

Design Example:
Quadrature Demod

48-TAP
20
MHz FIR
16 b . |
'®; ,.'7'_. 41
NCOCOS 10
SIN

SMPL 10
" T I .
MHz

This demodulator consists of a channel demodulated with a Sine and Cosine function.

- The frequency is brought down mixing the input signal with a local oscillators (sin and cos) that are
running at a frequency close to the channel.

The output of the mixer (multiply with a lower frequency sin wave) gives the sum and the difference of
those 2 signals.

Ex: If the input we are interested in is 20MHz and the local oscillator runs at 21MHz, the output of the
mixer will contain IMHz and 41 MHz.

- Since we are interested in the lowest frequency (1MHz), a low pass filter is used to eliminate the highest
frequency. A high frequency means a high sample rate and processing high sample rates results in a lot of
logic used. The low pass filter eliminates the high frequency (41MHz), making it possible to process the
data at a lower sample rate. Lowering the sample rate is called decimation. In our case we decimate in the
act of filtering - (this is represented by the 48-TAP 4:1 Decimate Filter).

Getting Started

The goal of this Lab is to implement a Demodulator using the Xilinx Core Generator in conjunction with
Foundation.

You will first need to create a new Foundation Project:

New Project

MNarne: {DEMOD] 0K |
Cancel |
Browse_ |

Type: [ACTstep M1 =] Help |

Farnily: Fart: Speed:

[cannoL x| Jao3<Pazan = =

Directony: iC:\ACTIVE\,PROJECTS

You will then have to open the Xilinx Core Generator and set the Options as follows:

- Under Options -> Output Format, select XNF implementation Netlist and Foundation
Schematic Symbol

Notel: Once you click on OK, a Warning will come up asking you to open the Foundation
Schematic Editor. This is due to a bug with the symbol generator (NET2SYM) which will not
generate the symbol unless the schematic editor is opened or iconized.

Note2: The symbol generator does not work on Windows NT but will be fixed in F1.4. In
the meantime, you will have to import the netlist from the schematic editor ...

- Under Options -> Systems Option..., update the Project Path to your design entry project Path
(i.e. c:\active\proejcts\demod).
All the other Path are automatically updated during the install so you do not have to modify
them.

Lab 1: Numerically Controlled Oscillator (NCO) Implementation

Numerically Controlled Oscillator Block Diagram
NCO Inteqgrator
— Sine LUT -sinfp..01
phasefm. 0] ——m ° z’
Z
clk \—,—p
reset + — Cosine LUT - cos]p.0]

Functional Description
The NCO function contains sine and cosine look-up tables (LUTSs) that perform the following functions:

Sin(n) = sin(2101/N)
Cos(n) = cos(2Tm/N)

Where: n = Address input to the LUT
N = Number of samples in the LUT
Sin(n) = Amplitude of sine wave at (2102/N)
Cos(n) = Amplitude of cosine wave at (2172/N)

Incrementing »n from 0 to N-1 causes the LUT to output one complete cycle of amplitude values for the sine
and cosine functions. The value 270/N represents a fractional phase angle between 0 and 27t The time (t)
required to increment # from 0 to N-1, is the period of the sine and cosine waveforms produced by the
NCO. The LUT address increments once each system clock cycle by an amount equal to the phase input.
The LUT address, or phase angle, is accumulated and stored in the integrator (also called phase
accumulator register). The register’s output is used to address the sine and cosine LUTs.

The frequency (f) of the system clock (f., k) is fixed. Therefore, the frequency of the sine and cosine waves
is:

F =1/t =« * phase[m..0] / 2™

Modules Generation
The parameters are the following:

- 12-bit Input phase,

- 20-bit Accumulator,

- 64 samples sin/cos table
- 10-bit Outputs

1- Generate the Input Phase Register

From Coregen, select the REGISTER module under LogiCORE -> Basic Elements. Double click on
the Icon (left side of the module name) and enter a Component Name and a Data Width of 12.
Generate.

2- Generate the Integrator

From Coregen, select the INTEGRATOR module under LogiCORE -> Math. Double click on the Icon
and enter a Component Name, Input Data Width of 12 and Output Data Width of 20.
Generate.

3- Generate the SIN/COS Table
From Coregen, select the Sine-Cosine Look-Up Table module under LogiCORE -> DSP -> Building
Blocks. Click on the Spec Icon (Green Icon located on the top left corner) to bring up the Sine-Cosine
Look-Up Table data sheet and answer the following questions:
Q1) Are all the values that represent the Sine Wave Stored in the ROM Look-Up Table? If not, how
much of it is stored?
Q2) How many CLBs is a 64 words by 10 bits Sine Table going to use?

Q3) How many clock Latency?

Q4) Do you need to generate two separate modules for the Sine Table and the Cosine Table used in the
NCO?

Q5) What Sine Wave are you getting if the Ctrl signal is:
ctrl=1:

ctrl=0 :

Bring up the SIN & COS Look-Up Table GUI and enter a Component Name, Address Width of 6 and
Output Data Width of 10.
Generate.

Design Implementation

Go into the Foundation Schematic editor and select Update Libraries from the File menu. This will add the
three new cores that you just generated into the Symbols Toolbox.

Reminder: If you are on Windows NT, the automatic symbol generation doesn’t work so you need to select
“Import Netlis 't from the Option Menu and import each Netlist. The symbol will be generated with Pins
instead of Busses so you should edit the symbol and modify it.

Connect the 4 Cores as shown below. Note that the upper 6 bits of the output of the integrator are driving
the Sine-Cosine Table.

Murmerical Controlled Oscillator

A0 CLIMAT19:0) Cazine Table
o _ Uz
ACCUM{IE: M) ™ Forme Vomis] .
TUETORS] O TR T el ([(15 [0:01]
I—ETRI.
l TRIGTHL
Sine Table
U4
lmegmw ACCUMIE EJ:|' Caoraden Mogule 1M
e o |_“'mm O Tt Tt el 5 W[201]
= CTRL
PH&3_OFF11] e P
o ———— <
" —ies TRIGTEL

9 4
; REG1Z INT20
T

Save this sheet as NCO and under Hierarchy, select Create Macro symbol from Current Sheet in order to
generate a symbol.

Simulation

The goal is to run two simulations with a different phase offset value and compare the amplitude values
that you get on the Sine and Cosine outputs. Put some Probes on the Phas off[11:0], CE and CLK inputs as
well as on the THETA inputs of each Trigonometric Tables and their SIN[9:0], COS[9:0] outputs.

S1) Load a phase offset of 100 (hex) and clock the NCO until you start seeing some Sine and Cosine
amplitude values. It is necessary to clock the NCO until the output of the Integrator is high enough to start
driving the Theta input of the Sin/Cos table. Look at the Sin and Cos LUT outputs and save the 8 first
values on the table below. The 8" value should be the same for COS and SIN, can you explain why?

S2) Now, rerun the simulation doubling the phase offset value (load 200 (hex)). Compare the Sin and Cos
outputs with the previous simulation and you should see that only every other amplitude values are now
displayed. Can you explain why?

You are Done with Lab 1.

Lab 2: Multipliers

This Lab will give you a chance to generate 3 types of multipliers. The first one comes straight out of
Coregen since it meets the requirements we have to implement the Demodulator. The second one has
nothing to do with the Demodulator design but will show you how you can speed up the Coregen multiplier
by combining several of them together. Finally, the third example will show you how to implement a
Complex multiplier.

1-10x10 Multiplier
This multiplier will be used in the top level Demodulator design so you do not have to change the
Foundation nor the Coregen settings at this point.
From Coregen, go under LogiCORE -> Math -> Multipliers. Three types of multipliers are currently
available: Constant Coefficient Multipliers, Speed-Optimized Multipliers and Area Optimized
Multipliers.
Using the Data sheets available for this modules, answer the following questions:
Q1) 8x8 Non-Pipelined KCM
Number of CLB used?
Q2) 8x8 Pipelined KCM

Number of CLB used?
Number of Clock Latency?

Q3) 8x8 Speed Optimized Multiplier
Number of CLB used?

Number of clock Latency?
Performance in a —1 part?

Q4) 8x8 Area Optimized Multiplier
Number of CLB used?

Number of clock Latency?
Performance in a —1 part?

Q5) Compare the performance and the CLB count of a 8x16 and a 16x8 area optimized multiplier.

Which one is faster?
Which one is bigger?

Q6) All the cores generated with Coregen are relatively placed. All the variable multipliers (NxM) are
built to fit in a rectangular or square matrix of N rows by M (or M-1) columns.

What is the shape of a 8x16 multiplier?
What is the shape of a 16x8 multiplier?

Conclusion: The Short and Fat multiplier runs faster but is bigger than the Tall and Thin one. This
should be taken in consideration when entering the A and B width of the multiplier.

It is now time to Generate the 10x10 multiplier for the Demodulator design.

2-_Speed up the Area Optimized Multiplier

Requirements: 14x14 signed multiplier running at 7SMHz in a XC4000E-1 part.

Design Overview

A regular 14x14 multiplier runs at 62MHz and uses 173 CLBs (see Data Sheet). In order to increase the
speed of the Area Optimized Multiplier provided in the Xilinx Core Generator, it is possible to use two
multipliers in parallel. Each multiplier processes one half of the data and their outputs are added together to

produce the full resolution result.

Q1) What is the performance and the CLB count of a 7x14 multiplier?

Note: If splitting one of the input in half doesn’t give you the performance required, it is possible to split it
in 3 or more, in which case 3 or more multiplier would run in parallel.

Each of the modules needed to implement this design are parameterizable cores available in the Xilinx

Core Generator. There are four basic components to the filter: The Upper half multiplier, the lower half
multiplier, the output adder and the output register.

14x14 Signed Multiplier

DataA[13:0] DataA[13:7] A[6:0] 7x14 Signed
’ Multiplier 21
DataB[13:0] B[13:0] PROD[20:0]
CK
Register)
o Adde PRODJ[27:0]
7 bits sign
extension
GND the MSB to make is an unsigned number
14 —
DataA[6:0] | A[7:0] 8){141 Si%ped Drop the MSB
Multiplier 21 7 Register| 7
. D
B[13:0] PROD[21:0] Q
CE
| CK
X

Upper Half Multiplier: Used to multiply the upper half of DataA time DataB. Both DataA and DataB’s
MSB represent the sign bit in this case so the multiplier to generate is a 7x14 Signed multiplier.

Lower Half Multiplier: Used to multiply the lower half of DataA time DataB. DataA’s MSB (7™ bit) in
this case is NOT a sign bit and hence the input A should be treated as an Unsigned data. Since the Core
Generator is not currently able to generate an UNSIGNED x SIGNED multiplier, it is necessary to add an
extra bit to the lower half of DataA and ground it. The multiplier to generate is now a 8x14 Signed
multiplier.

Lower bit register: Used to register the shifted data. In this example, the register to generate is of 7 bits.

Registered Adder: There are two important things to remember in regards to adding the partial results
together. The first is that the incoming data carries signed information and is therefore in twos complement
form. The second is that the upper half of the data is 7 bits more significant than the lower half. This
relative positioning must be recreated when adding the partial results. An efficient way to obtain the final
result is to shift the less significant result 7 places to the right before adding. Notice that when this occurs
the least significant bits in the lower significant result have nothing to add, so we can remove and save
them in a register.

1110..110010110
+10101100110..11

Removing the 7 lower bits gives:

1110..11
+10101100110..11

These numbers, however, are both in twos complement form, and carrying sign data in their most
significant bit. To maintain the sign value for both numbers it is necessary to sign extend the less
significant result 7 places. To sign extend, the most significant bit (now bit 20) is replicated onto newly
created bits 21,22,23,24,2526 and 27. This gives:

11111111110..11
+10101100110..11

The purpose for this is to have the sign bit line up.

Q2) Does sign extending the number changes the value?

Q3) How many CLBs is this faster multiplier going to require?

Q4) What is the limiting performance path? What can be done?

Q5) Create a new Foundation Project and implement this design.

Q6) Simulate to make sure that it is correctly implemented. Remember that you are dealing with
signed number (2’s complement format).

3FFF x 3FFF =-1x-1=1=0001

1FFF x 1FFF = 8191x 8191 = 67092481 = 3FFC001
3FFF x 0001 =-1 x 1 =-1 = FFFFFFF

10

1. Complex Multiplier

Complex multipliers are often used in DSP application...
The implementation we are the most familiar with is the following:
(A+jB) (C+jD)=AC-BD +j(AD + BC)

where the Real side is Re= AC — BD
and the Imaginary is Im = AD + BC

This Complex multiplier requires 4 Multipliers, 1 subtractor and 1 adder which is pretty expensive as
far as CLBs.

Q1) How many CLBs would be required to implement a 14x14 complex multiplier using this
implementation?

By decomposing this equation differently, we can achieve a much more efficient way to implement
this multiplier:

(A +jB)(C+jD)=AC-BD+j(AD + BC)
Take:

x=a(c+d)=ac+ad
y=b(c—d)=bc—bd
z=d(a+b)=ad+bd

Then:

x—z=ac+ad—ad—bd=ac—bd=Re
y+z=bc—bd+ad+bd=bc+ad=1Im

In summary:
Re=x-z=a(c+d)-d(a+b)
and
Im=y+z=b(c-d)+d(a+Db)

This Complex Multiplier can now be implemented using 3 Multipliers, 3 adders and 2 subtractors.

Q2) How many CLBs are now used for a 14x14 complex Multiplier with this new approach?

11

Design Implementation

u Al G fig
m 1 EGA1I0] ' Fr1E] d [
RAIEY L =PLO= O . - ke
] —tfr
—t e
Gl EE@G{E G217 SRR il REM
RLCa i) ' n
A_PLUE_B[14] L.
o | b
Ui
e _
1 el “ SUBTn
1 — BLOC 1613
b
ADD1aR L
BECC- Tl
Sipsipen “ﬁ& C_WMINUE D[140] RES1D
- - - R LOC = ri6c 16
u
o
o 2
—1 uz - _W MU S Uz
1= o W
B0 FUELE, = Vgls P ECGE|TI] sk R k719 oprgrn @
== N o
WLT 114
- ALCC - e 1" e
RES14 REZI it A IL4 124
R Lo rlfici) R L= riics -
us
[adhts ™ [T W _PLUS O[1ad] T LT uis —"
» G B I "
e 1. AODTAR
o 1 RLOC - iG]
"
| "
ADDan REGID
LOC= i) Ud i _PLUS | Lo rigcld
D125 = e eSO aarn _—
. WL Tl
1 ALOE = D17
REGT
LT
o

You are done with Lab 2!

12

LAB 3: Finite Impulse Response (FIR) filter

The goal of this Lab is to understand how to generate a FIR filter using the Core Generator and how to
simulate it.

N BITS WIDE

SAMPLE DATA FIRFILTER

==
¥

g
v o SUM—

OUTPUT
,@ DATA
C,

— > KSUM's

K TAPS LONG

Functional Description

The input signal x(n) is a series of discrete values obtained by sampling an analog waveform. In this series
x(0) corresponds to the input value at t=0, x(1) is the value after on sampling period, x(2) is the value after
2 sampling period, and so on. Each set of registers is a time delay of one sampling period.

x(n-1) is the value of x(n) one time period before now, i.e., the previous input.

In the example shown above, the output signal y(n) is always a combination of the last K input samples.
Each of the samples is multiplied by a coefficient, Cg, to give:

y(n)= Cy.x(n) + C,.x(n-1) + C,.x(n-2)... C,.x(n-k)
Notion of Symmetry
A Filter is said Symmetric when its coefficient match the following pattern:
C=C.,C=C(C,,C=C,,C=C_ ie:forallTapsfilter: C,=C,,C,=C;,C,=C,...
Now, the equation becomes: y(n)= C,.[x(n) + xX(n-k)] + C,.[x(n-1) + x (n-k-1)] + C,.[x(n-2) + x(n-k-2)]...
Negative symmetry is the following:
C=-C.,C=-C,,C,=-C, ,C;=-C;__
Negative symmetry causes phase shift in the data of 90 degrees

Non Symmetric is when none of the above applies.

13

Module Generation

From Coregen, Select the SDA Single CHANNEL module under LogiCORE -> DSP -> Filters -> FIR
Filters -> Serial Distributed Arithmetic -> SDA FIR Filter single-Channel.

The parameters are the following:

- 8-bit data in, signed

- 12 Taps

- 10-bit coefficient width

- Symmetric

- Maximum output width (21)

Q1) How many CLBs is this filter going to use?

Q2) What is the maximum Sample Rate if it is clocked at 70MHz?

Before you can generate the filter, it is necessary to enter the coefficients using a Coefficient (*.COE) file.
Create your own coefficient file based on the example below, or by modifying the one found under
c:\coregen\wkg\sdafir.coe. The syntax and parameters of the COE file are also explained in the online
documentation under the Help -> Help Topic menu.

sk sk sk sk sfe sk sk sk skeoskeosk skeskosk skoskosk ok COE file Example 3k sk sk sk sfe sk sk sk sk sk sk sk skeoskosk sk skosk skoskosk kosk

compname=FIR12T8B;
taps=12;

radix=10;
inputwidth=8;
outputwidth=21;
coefwidth=10;
symmetry=symmetric;
data=1, 2, -3, -4, 5, 6;

sk sk sk s ske sk sk sk sk sfeoske sk sk sk sk seoske sk sk sk sk seoske sk sk sk ke seoske sk skeosk sk seoske sk sk sk sk seoske sk skeosk sk skosk ok skoskok skokok skokok

The coefficients are listed after the Data parameter which should always be placed last in the COE file and
are in increasing time order.

Double click on the “SDA FIR Filter Single Channel” entry to reveal the SDA FIR Filter parameterization
window. Click on the “Load coefficients” button and specify the example.coe file shown above. Inspect the
various fields on the window to ensure that they have all taken-on the values from the .COE file.

Verify that the coefficients have been read correctly by clicking on “Show Coefficients” and finally click
on Generate

14

Simulation

Load the symbol into the Foundation Schematic Editor and attach some Nets and Busses to it, or attach the

simulation probes directly on the symbol pins. Since the “Cascade option” was not selected, the pins
labeled SINF, SINR, SOUTF and SOUTR are unused and can be safely ignored. If you are not familiar

with the pinouts, please check the table below.

The Sample Data is loaded in Parallel on the raising edge of the clock when ND (New Data) is high. New
Data should be asserted for ONE clock cycle after RFD (Ready For Data) goes high. In order to initialize

CORE Signal Pinout

Signal

Signal
Direction

Description

DATA

Input

Parallel Data Input - MN-hits
wide

CK

Input

Bit rate clock

MO

Input

Mew Data, activa high to indi-
cate thal the next rising edge
of the clock will cause data to
be loaded into the paralial-to-
sernal converter (PSC).

RFL

Ohstpt

Ready For Data - active high
whan the last data bit is
aboul o leave the PSCand a
new data word may be ap-
plied and loaded into the filter
on the DATA input.

ASL

T

Ohstpt

Parallel Data Out - Nax hits
wide

ROY

Cutput

Hesult Ready — active high
when the RSLT data s avail-
able

the internal counter in the SDA FIR Filter, it is necessary to run the clock for several cycles (as many as the
input bit width) before loading a new sample.

iy 10ns/div '—'—'—U 100ns |200ns |300ns |[400ns |[500ns [600ns [700ns lus 1.1us
E 0.0 EIIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII| IIII|IIII|IIII|IIII
iUl . CKE -

EU1 . DATAD . (heqFO[00 | [0@ o1

i(01 . HD - la

o|Tl . FDY -

o|Tl FFD —

E[U1 .RSLTO. (heq |00|[000000

15

There are two ways to simulate this Filter and easily verify that it is functioning properly:
1) Impulse response
An impulse is a non-zero value surrounded by all zeros on either side. This non-zero value is
one sample wide.
For the impulse response, you will be sending an impulse of 01\h on the Data Input and verify
that all your coefficients come out.

If we look at the FIR Filter equation: y(n)= Cy.x(n) + C,.x(n-1) + C,.x(n-2)... C..x(n-k)

The output of the filter should be the following:

y(0)=C,.01 + C,.00 + C,.00... C,.00 = C,
y(1)=C,.00 + C,.01 + C,.00... C,.00 = C,
y(2)=C,.00 + C,.00 + C,.01... C,.00 = C,
y(k)= C,.00 + C,.00 + C,.00... C,.01 = C,
|l.6T8us| | l.?J|.6us| | l.BE|I4us| | l.STZusl | |l.9E|!us 2.DT4us| | 2.1]|.2u5| | ‘Z.ZTE ‘2.2]141.15' | z.
FEERREREr e eb et e e e e b e e e e e e e e b e e e e e e e ee e e e e e e e b bbb e e e e e e e e e e e e et e e e e e e e e e et e e e e e e e e e e e e e e e e
CK = ..
DATAD . (hegFll
RED — | lfomoormsmoemmemeoemeee oo P s e e et
FSLTO0. {heq |[||00L000Z0C(000100/000080{000040{000020[000010(000008/000004/00000Z(1FFD0L (1FFERG]1FFF40(1FFFALIFFRDG|IFFFEE] IFFFF4|IFFFFA LFFEEL)

Simulate and verify that the Coefficients appear on the output when the RDY signal (ReaDY) is
high.

2) Step response

In the step response simulation, the sample is a non-zero value which remains unchanged for
as many samples as number of Taps. The ouptut in this case should be a sum of coefficients.

If we look at the FIR Filter equation: y(n)= Cy.x(n) + C,.x(n-1) + C,.x(n-2)... C..x(n-k)
The output of the filter should now be the following:

y(0)=C,.01 + C,.00 + C,.00... C,.00 = C,

y(1)=C,.01 + C,.01 + C,.00... C,.00 = C, + C,

y(2)=C,.01 + C,.01 + C,.01... C,.00=C, + C, + C,

y(k)=C,.01 +C,.01 +C,.01... C,.01=C,+C,+C, + ...+ C,

End of Lab3.

End of the Coregen Lab!
Thank you.

16

