
Exemplar Tutorial 1-1

Chapter 1

Watch Design - Exemplar Tutorial

This tutorial describes how to use the UNIX workstation and PC
versions of Exemplar Leonardo Spectrum (Verilog/VHDL) for
XC4000E/EX/XL/XV designs using MTI for simulation. It is based
on the Watch design, and is a flow based tutorial. You can goto the
following WEB address to see all the A1.5 tutorials that are available:
http://www.xilinx.com/support/techsup/tutorials/.

To download the Watch Design - Implementation Tools Tutorial you
can goto: ftp://ftp.xilinx.com/pub/documentation/M1.5_tutorials/
wd_imp_15.pdf

To download the Watch Design - Hardware Verification Tutorial you
can goto: ftp://ftp.xilinx.com/pub/documentation/M1.5_tutorials/
wd_hwd_15.pdf

This chapter contains the following sections.

• “Design Description”

• “Required Software”

• “Before Beginning the Tutorial”

• “Installing the Tutorial Files”

• “Creating the Tenths LogiBLOX Component”

• “RTL Simulation”

• “Synthesizing the Design Using Exemplar”

• “Implementing the Watch Design”

• “Timing Simulation”

Exemplar Tutorial

1-2 Xilinx Development System

Design Description
The Watch design is a counter that counts up from 0 to 59, resets to
zero, and starts over. The only user inputs are a start/stop button and
a clear switch. The Watch design utilizes the OSC4 internal oscillator
in the 4000E/EX/XL/XV parts. The design outputs hexadecimal
values to a seven-segment display. The tenths count output is
displayed on the bar LED.

The Watch Design consists of the following elements.

• WATCH—the top-level design

• OSC4—internal oscillator macro; used to generate the clock
signal

• STMCHINE—statemachine that controls starting, stopping, and
clearing the counters; one-hot encoded

• TENTHS—LogiBLOX 10-bit one-hot counter; outputs the tenths
digit as 10-bit one-hot value

• CNT60—counter that outputs ones and tens digits as 4-bit binary
values; counts 0 to 59 (decimal)

• HEX2LED—converts 4-bit values of ones and tens to 7-segment
LED format

• DEBUG_CKT—circuit to allow synchronous debugging

Required Software
You must have the following software to use this tutorial.

• Exemplar Leonardo Spectrum v1998.2 or later

• Model Technology ModelSim EE5.1 or later (UNIX), Modelsim
PE 4.7 or later (PC)

• Xilinx Development System Version M1.5 or later

Before Beginning the Tutorial
Before you begin this tutorial, set up your workstation to use Exem-
plar Leonardo Spectrum, Model Technology, and the Xilinx Develop-
ment System as follows.

Watch Design - Exemplar Tutorial

Exemplar Tutorial 1-3

1. Verify that your system is properly configured. Consult the
release notes and installation notes that came with your software
package for more information.

2. Install the following software.

• Xilinx Development System

• Exemplar Leonardo Spectrum

• Model Technology ModelSim EE

3. When you finish the installation, verify that the setup file or the
.cshrc file contains variables similar to the following.

UNIX platform

setenv XILINX location_of_Xilinx_software
setenv MODEL_TECH location_of_Modelsim_software
setenv EXEMPLAR location_of_exemplar_software
set path=($XILINX/bin/< platform_name> \
$EXEMPLAR/bin/< platform_name> \
${MODEL_TECH}/bin $path)

PC platform

Make sure in the autoexec.bat that the path points to the Xilinx
and Exemplar install area.

path=c:\Xilinx\bin\nt;c:\leo_spectrum\V1998.2\bin\win32

This is done automatically by install if you have chosen to let the
install modify the system files.

Note: You may also set up the license file LM_LICENSE_FILE. See
the installation notes for the particular software packages to setup the
license file.

Installing the Tutorial Files
If you don’t already have the tutorial files, you can download a tar.Z
file from the Xilinx Web site at the following URL.

http://www.xilinx.com/support/techsup/tutorials/

When you uncompress and untar or unzip the file, there are two
directories, one for Verilog and one for VHDL. The Verilog and the
VHDL directories each contain the /src directory where all the HDL

Exemplar Tutorial

1-4 Xilinx Development System

files are located, a solution directory called /watch_4ke, and the /
watch directory containing all the files used to perform the tutorial.

Tutorial Directory and Files
The tutorial directory which contains the tutorial files needed to
complete the design are in the /watch directory. Some files are not
present in this directory since you will create them as part of this
tutorial. The following table lists the contents of the tutorial directo-
ries.

Verilog Design Files
Watch.v is the top level design file which instantiates the following
lower level Verilog files.

• stmachine.v

• smallcntr.v

• cnt60.v

• hex2led.v

• debug_ckt.v

• tenths.v for functional RTL simulation only

Note: The tenths one-hot counter is a LogiBLOX macro that will be
created.

Directory Description

xmplr_tut/verilog/src Verilog source files

xmplr_tut/verilog/watch_4ke Verilog solutions directory for
XC4003E-PC84

xmplr_tut/verilog/watch Verilog Tutorial Directory

xmplr_tut/vhdl/src VHDL source files

xmplr_tut/vhdl/watch_4ke VHDL solutions directory for
XC4003E-PC84

xmplr_tut/vhdl/watch VHDL Tutorial Directory

Watch Design - Exemplar Tutorial

Exemplar Tutorial 1-5

VHDL Design Files
Watch.vhd is the top level design file which instantiates the following
lower level VHDL files.

• stmachine.vhd

• smallcntr.vhd

• cnt60.vhd

• hex2led.vhd

• debug_ckt.vhd

• tenths.vhd for functional RTL simulation only

Note: The tenths one-hot counter is a LogiBLOX macro that will be
created.

Verilog Testbench
The testbench.v file is included in the tutorial directory.

VHDL Testbench
The testbench.vhd file is included in the tutorial directory.

Script Files
The following script files automate the steps in this tutorial.

• behav_sim.do

• synthesis.tcl

• implment.scr

• time_sim.do

• mti_run_ee.do (UNIX platform)

• mti_run_pe.do (PC Platform)

Simulation Libraries for MTI
To simulate Xilinx designs with ModelSim, you need the following
simulation Libraries which you must compile.

Exemplar Tutorial

1-6 Xilinx Development System

• UNISIM Library—The UNISIM library is used for Behavioral
(RTL) simulation with instantiated components in the netlist, and
for post synthesis (Pre-M1) simulation. The UNISIM VHDL
library is VITAL compliant, and it also adds support for new
device start-up components ROC, ROCBUF, TOC, TOCBUF, and
STARTBUF for simulation. The Verilog library contains separate
libraries for each of the UNI3000, UNI4000E, UNI4000X,
UNI5200, and UNI9000 device families.

• LogiBLOX Library—The LogiBLOX library is used for designs
containing LogiBLOX components during pre-synthesis (RTL)
and post-synthesis (Pre-M1) simulation. These LogiBLOX
libraries are used for VITAL VHDL simulation only. Verilog uses
SIMPRIM libraries.

• SIMPRIM Library—The SIMPRIM library is used for post
NGDBUILD (gate level functional), post MAP (partial timing),
and post-place and route (full timing) simulations. This library is
architecture independent and supports VHDL and Verilog.

For detailed instructions on compiling these simulation libraries, see
the instructions in Xilinx Solution # 1923 which is available at http://
www.xilinx.com/techdocs/1923.htm.

After compiling the libraries, notice a file that is created by MTI called
modelsim.ini. If you view this file you will notice that the upper
portion defines where the compiled libraries are located. When doing
a simulation, this modelsim.ini file must be copied into the directory
where the HDL files are being compiled and where the simulation is
being run. This can be done manually, or if the enviornment variable
MODELSIM is set to point to the modelsim.ini then it will be copied
over automatically when running MTI commands such as ‘vcom’.

setenv MODELSIM path/modelsim.ini

Copying the Tutorial Files
You can either perform the tutorial in the /xmplr_tut/(verilog or
vhdl)/watch directory or copy it contents over to a directory in which
to perform the tutorial.

Copy the tutorial files as follows.

Watch Design - Exemplar Tutorial

Exemplar Tutorial 1-7

UNIX platform

1. Create a project directory that you can write to when performing
the tutorial. Normally you can name it whatever you want, but in
this tutorial it is called tutor.

mkdir tutor

2. On a UNIX workstation, use the cp command to copy all the files
from the /xmplr_tut/vhdl/watch directory to the destination
directory where the tutorial will be performed. Copy the tutorial
files from the untar_dir/vhdl or verilog/ watch/ directory to the
/tutor directory.

cp -r /xmplr_tut/(veriog or vhdl)/watch/* path/
tutor

PC platform

Use the Windows Explorer and create the tutorial directory, then
copy the contents of the /xmplr_tut/(verilog or vhdl)/watch direc-
tory over to this new directory.

Creating the Tenths LogiBLOX Component
Because the Watch design contains a LogiBLOX macro, you must
create it before performing RTL simulation or implementation. When
creating the LogiBLOX component, you will also create a behavioral
simulation netlist for RTL simulation, an implementation netlist, and
an instantiation netlist if the option is chosen. To create the LogiBLOX
component, follow these steps.

1. To invoke the LogiBLOX GUI, type lbgui at the UNIX prompt.

The LogiBLOX GUI and the Setup dialog box open. See the
“LogiBLOX Setup Dialog Box” figure 1-1, and the “LogiBLOX
Module Selector” figure 1-2.

2. In the Vendor tab of the Setup dialog box, select Mentor or other,
and pick the bus notation for parenthesis B(I). See the “LogiBLOX
Setup Dialog Box” figure 1-1.

3. For the Project Directory, specify the directory you wish to write
the files to. You can use the Browse button, or type in the path to
the project directory.

Exemplar Tutorial

1-8 Xilinx Development System

4. For the Device Family, select the xc4000e family since you are
going to download to the demoboard. You can pick a different
device if you do not plan to download to the demoboard.

5. In the Options tab of the Setup dialog box set the following
options.

Verilog tutorial

• Simulation Netilst: Behavioral Verilog netlist

• Component Declaration: Verilog Template

• Implementation Netlist: NGC File (A1.5, NGO for A1.4)

• LogiBLOX DRC: Stop Process on Warning

VHDL tutorial

• Simulation Netlist: Behavioral VHDL netlist

• Component Declaration: VHDL Template

• Implementation Netlist: NGC File (A1.5, NGO for A1.4)

• LogiBLOX DRC: Stop Process on Warning

6. Click OK to close the Setup dialog box.

Note: If you are familiar with LogiBLOX, notice that the implementa-
tion netlist extension is now .ngc. This is new in the Xilinx A1.5. For
more details read Xilinx Solution #3904, which is available at http://
www.xilinx.com/techdocs/3904.htm.

Watch Design - Exemplar Tutorial

Exemplar Tutorial 1-9

Figure 1-1 LogiBLOX Setup Dialog Box

7. In the LogiBLOX Module Selector dialog box (shown in “Logi-
BLOX Module Selector” figure 1-2), set the following options.

• Module Type = Counters

• Module Name = tenths

• Bus Width = 10 (This width is typed in by user.)

• Deselect D_IN

• Select the following: Async. Control, Terminal Count

• By default, the following is selected: Clock Enable, Q_OUT

• Operation = Up

• Style = Maximum Speed

• Encoding = One Hot

• Async. Val = 2#0000000001#

Exemplar Tutorial

1-10 Xilinx Development System

Figure 1-2 LogiBLOX Module Selector

8. Click OK.

LogiBLOX generates the following output files.

• logiblox.ini—shows the LogiBLOX options used

• logiblox.log—log file of the LogiBLOX GUI messages
window

• tenths.mod—LogiBLOX Modules options file

• tenths.ngc—implementation netlist

• tenths.vei—Verilog declaration/instantiation template

Watch Design - Exemplar Tutorial

Exemplar Tutorial 1-11

• tenths.v—Verilog behavioral simulation netlist

• tenths.vhi—VHDL declaration/instantiation template

• tenths.vhd—VHDL behavioral simulation netlist

RTL Simulation
For simulation, the testbench.vhd file is provided for simulation
stimuli, as well as the configuration statement to simulate the OSC4
symbol. For simulation, the only required files are the VHDL source
files, the testbench, and the LogiBLOX tenths.vhd behavioral netlist.
The simulation can be done in the project directory or in a directory
of choice, such as in a directory called func.

The Watch design contains an XC4000E library part, OSC4. This
component represents the on-chip oscillator that generates nominal
clock frequencies of 8 MHz, 500 KHz, 16 KHz, 490 Hz, and 15 Hz. The
Watch design uses the 15-Hz output from this component when
targeted for XC4000E family designs. The clock output from OSC4 is
buffered through a BUFG global clock buffer to minimize clock skew.
XC4000E family devices have eight on-chip clock buffers, one BUFGP
(primary global buffer), and one BUFGS (secondary global buffer) in
each corner of the device. Although it is possible to use them for
other purposes, BUFGPs are best used to route externally-generated
clock signals. BUFGSs have more flexibility, and can be used to route
any large fan-out net, even if it is internally sourced. A BUFG symbol
can represent either type of buffer, and allows the implementation
software to choose the type of global buffer that is best in each situa-
tion. BUFG also facilitates design retargeting to other Xilinx device
families, since it can represent any type of global buffer in any family.
The BUFG in the Watch design is substituted for a BUFGS during
design implementation, because the clock is generated internally by
the on-chip oscillator. See the Xilinx Libraries Guide and the Xilinx
Programmable Logic Data Book for more information on global clock
buffers for Xilinx devices.

It is not necessary to create a clock for the WATCH testbench, since
the design already contains the OSC4 component which generates the
8MHz and 15 Hz signals. However, for simulation purposes, it would
take an enourmous amount of CPU time to simulate the 8MHz and
15Hz signals. Therefore, the testbench will create the clock signal and
bring this clock in on the external clock signal ‘ext_clk’, to speed up

Exemplar Tutorial

1-12 Xilinx Development System

the simulation. When downloading to the demoboard the internal
clock will be used unless you are performing the Debugging Tutorial.

Note: For Verilog simulation, the OSC4 model has a timescale preci-
sion of 100ps. To make a transition to the first edge of the 15Hz clock,
which is at 3.33E10 ps (.0333 seconds), requires 3.33E10 / 100 = 333
million simulation events. The OSC4.v UNISIM model is located at
$XILINX/verilog/src/UNI4000E. Therefore, a clock is defined in the
testbench/testfixture that clocks much faster, and this clock is
selected through a multiplexer to force its values onto the CLK signal,
bypassing the OSC4 F15 clock.

Note: Xilinx Solution # 3767 contains further information on the use
of the OSC4 with VHDL simulation for ModelSim. This is available at
http://www.xilinx.com/techdocs/3767.htm for review.

Copying Source Files to the Functional Simulation
Directory

Copy the following files into the tutorial directory.

Verilog tutorial

Copy the following files from the xmplr_tut/verilog/watch/ direc-
tory to the /tutor/func directory:

• smallcntr.v

• cnt60.v

• hex2led.v

• tenths.v

• debug_ckt.v

• watch.v

• stmachine.v

• testbench.v

• behav_sim.do

• mti_run_ee.do (UNIX)

• mti_run_pe.do (PC)

Watch Design - Exemplar Tutorial

Exemplar Tutorial 1-13

VHDL tutorial

Copy the following files from the xmplr_tut/vhdl/watch/ directory
to the /tutor/func directory:

• smallcntr.vhd

• cnt60.vhd

• hex2led.vhd

• tenths.vhd

• debug_ckt.vhd

• watch.vhd

• stmachine.vhd

• testbench.vhd

• behav_sim.do

• mti_run_ee.do (UNIX)

• mti_run_pe.do (PC)

Starting ModelSim

Unix platform

If you are using ModelSim EE, invoke the simulator by typing the
following at the UNIX prompt in the /tutor/func/ directory:

vsim -i &

PC platform

If you are using a PC, invoke the simulator by selecting Programs →
Model Tech → ModelSim from the Startmenu. Then set the project
directory using the File → Directory menu command and select
tutor/func/ directory.

Creating the Work Directory
Before compiling the HDL files, you must create a work directory, for
use as a library, as follows.

Exemplar Tutorial

1-14 Xilinx Development System

1. At the ModelSim prompt type the following:.

vlib work

Note: You must use the vlib command to create the work directory.
MTI creates a file inside work so it can recognize this as a work direc-
tory.

Compiling the HDL Source Files

Verilog Tutorial

You will need to comment out the Tenths module declaration within
the file watch.v since we will be providing the simulation model for
this component in later steps. You can comment out the lines by
adding a slash-slash ‘//’ at the beginning of the following lines:

module tenths (CLK_EN, CLOCK, ASYNC_CTRL, Q_OUT,
TERM_CNT)

/* synthesis black_box */;

input CLK_EN, CLOCK, ASYNC_CTRL;

output [9:0] Q_OUT;

output TERM_CNT;

endmodule

The Vlog command compiles Verilog code for use with Vsim RTL
simulation. Type the following at the ModelSim prompt:

vlog testbench.v watch.v stmchine.v hex2led.v debug_ckt.v
cnt60.v smallcntr.v tenths.v

VHDL tutorial

Since Xilinx Unified library components are instantiated within the
VHDL source code, the UNISIM simulation models must be
provided for the OSC4, BUFG, MD0, MD1, IBUF, OBUF, RDBK, and
STARTUP components. The following lines have already been added
in the files watch.vhd and debug_ckt.vhd.

library UNISIM;

use UNISIM.vcomponents.all;

Watch Design - Exemplar Tutorial

Exemplar Tutorial 1-15

To compile the VHDL files for RTL simulation type the following
commands at the ModelSim prompt.

vcom tenths.vhd
vcom -explicit smallcntr.vhd
vcom cnt60.vhd
vcom hex2led.vhd
vcom debug_ckt.vhd
vcom stmchine.vhd
vcom watch.vhd
vcom testbench.vhd

The -explicit option resolves resolution conflicts in favor of explicit
functions.

Note: The above command along with invoking the simulator
commands below have been combined into a macro ‘do’ file. See the
Note in the ‘Invoke the Simulator’ section below on how to run the
macro file.

Invoke the Simulator

Verilog tutorial

For the verilog tutorial type the following at the ModelSim prompt to
invoke the ModelSim simulator:

vsim -L simprim_ver -L UNI4000E test

Since Xilinx Unified library components are instantiated within the
Verilog source code, the UNISIM simulation models must be
provided for the OSC4, BUFG, MD0, MD1, IBUF, OBUF, RDBK, and
STARTUP component. Also notice that the library simprim_ver is
listed as well, which is the name of the compiled verilog simprim
library name. For LogiBLOX generated components, NGD2ver is
used to generate a structural Verilog netlist to facilitate functional
simulation. The structural netlist contains SIMPRIM library compo-
nents which is mapped to the library simprim_ver.

VHDL

For the VHDL tutorial type the following at the ModelSim prompt to
invoke the ModelSim simulator, and to load ‘overall’

vsim overall

Exemplar Tutorial

1-16 Xilinx Development System

Note: The above sections for compling the HDL source and Invoking
the simuator commands have been combined into a ‘do’ file that can
be run after creating the ‘work’ library. The file is called
behav_sim.do. To execute the file type the following at the ModelSim
prompt:

do behav_sim.do

ModelSim EE users can run the macro file by choosing: macro →
Execute Macro, and choosing the do file. ModelSim PE users can
choose: File → Execute Macro, then choosing the do file

Running the Simulation
To perform the simulation do the following steps.

1. To view all the ModelSim debugging windows, type the
following at the ModelSim prompt.

view *

The Signals window, Wave window, and various other MTI
windows open. See the “MTI Signals and Wave Windows” figure
1-3.

2. In the Signals window, highlight the signals to be simulated.
Highlight all of them for this tutorial.

3. Drag and drop the signals into the Wave window to display the
simulation waveforms as shown in the following figure 1-3.

Watch Design - Exemplar Tutorial

Exemplar Tutorial 1-17

Figure 1-3 MTI Signals and Wave Windows

The equivalent way of doing this at the ModelSim prompt is to
type the following.

UNIX platform

add wave *

PC platform

wave *

In the Structure window notice that Verilog design units are indicated
by circles, and VHDL design units are indicated by squares. You can
expand and collapse the regions of hierarchy by clicking on the (+)
and (-) notations.

4. To run the simulation for a user specified amount of time at the
ModelSim prompt, type the following.

run 100 us

The simulation runs for the specified amount of time, and the
simulation output shows up in the Wave window. See “Simula-
tion Output in Wave Window” figure 1-4.

5. You may have to zoom in or out to view the waveforms. To do
this right mouse click in the Wave window and choose the Zoom
Full option to see the entire simulation up to this point.

Exemplar Tutorial

1-18 Xilinx Development System

Note: The above commands have been combined into a macro file
called mti_run_ee.do or mti_run_pe.do, that can be executed in
ModelSim. After invoking vsim and loading the design select Macro
→ Execute Macro from the MTI main window then select
mti_run_*.do.

Figure 1-4 Simulation Output in Wave Window

Synthesizing the Design Using Exemplar
In this section you will synthesize your design using three different
methods.

• Leonardo Spectrum Level 1

• Leonardo Spectrum Level 2

• Leonardo Spectrum Level 3

Currently Leonardo Spectrum Level 1 is not included with the release
software, but will be introduced at a later time. Level 2 is basically
equivalent to the previous Galileo version, and has a Wizard to auto-
mate the synthesis step. Level 3 is equivalent to the previous

Watch Design - Exemplar Tutorial

Exemplar Tutorial 1-19

Leonardo 4.2.2 version, and also has the Wizard to automate the
synthesis step, but also has an interactive capability to give the user
more control over synthesis.

Verilog tutorial

You will need to either add or make sure the Tenths module declara-
tion within the file watch.v exists, as this is needed for a black box
instantiation. You can un-comment the lines by removing the slash-
slash ‘//’ at the beginning of the following lines if they exist:

module tenths (CLK_EN, CLOCK, ASYNC_CTRL, Q_OUT,
TERM_CNT)

/* synthesis black_box */;

input CLK_EN, CLOCK, ASYNC_CTRL;

output [9:0] Q_OUT;

output TERM_CNT;

endmodule

VHDL tutorial

Note: Since the VHDL files contain instantiated Xilinx components,
the UNISIM library must be used. For synthesis, references in the
VHDL files to the UNISIM libraries must be removed. To do this, use
a text editor such as vi (UNIX) to edit the file watch.vhd and
debug_ckt.vhd. Either comment out the following lines by putting “--
” in front of each line, or just remove the lines.

-- library unisim;
-- use unisim.vcomponents.all;

For synthesis you may want to create a directory in which to process
the design through Exemplar. You will need to copy the follwing files
into the directory for synthesis: smallcntr.vhd, cnt60.vhd,
debug_ckt.vhd, hex2led.vhd, stmchine.vhd, watch.vhd, and
synthesis.tcl.

Leonardo Spectrum Level 1
Leonardo Spectrum Level 1 is for a single technology and allows a
new designer to quickly produce a high-qulaity netlist. Level 1 has an

Exemplar Tutorial

1-20 Xilinx Development System

easy upgrade path to Leonardo Spectrum Level 2. A logic designer
will select the input design and technology and the click on the Run
button. Currently Level 1 is not included in the initial release, but will
be introduced at a later date. For more information about Leonardo
Spectrum Level 1 you can goto the Exemplar web site at: http://
www.exemplar.com

Leonardo Spectrum Level 2
Leonardo Spectrum Level 2 is an easy-to-use FPGA synthesis, timing
analysis, and back-annotation tool. It is designed to maximize the
productivity of FPGA designers. The designer selects the input
design, output design, sets the constraints and target technology, and
runs the tool. A netlist is quickly produced. Level 2 has an easy
upgrade path to Level 3. For this tutorial we will run the Spectrum
Synthesis Wizard to process the design. With Level 2 it is possible to
run through each step of the design using the tabs.

The following apply for Unix and PC users unless otherwise speci-
fied.

1. To start-up the Leonardo Spectrum Graphical User Interface, do
the following:

UNIX platform

At the UNIX prompt type the following:

Leonardo &

PC platform

On a PC double-click on the Leonardo Spectrum icon on the
desktop, or choose Programs → Leonardo Spectrum
V1998.2→ Leonardo Spectrum

Watch Design - Exemplar Tutorial

Exemplar Tutorial 1-21

The Exemplar Leonardo Spectrum license checkout window
opens as shown in the following figure 1-5.

Figure 1-5 Leonardo Spectrum license checkout Window

2. Select Leonardo Spectrum Level 2, and click the OK button

3. The Leonardo Spectrum Synthesis Wizard Input Files window
will open as shown in the following figure 1-6

Figure 1-6 Leonardo Spectrum Synthesis Wizard Input Files

If this window does not come up choose Flows → Synthesis Wizard.

Exemplar Tutorial

1-22 Xilinx Development System

4. Check the working directory which is listed in the Synthesis
Wizard window. The working directory is also listed in lower
right hand corner of the Leonardo Spectrum Main Window. By
default the working directory is set to the directory which the
working directory was last set to. To change the working direc-
tory click on the folder icon just to the right of the listed working
directory and browse to the proper directory. Select the directory
and click on the Set button.

5. Add the files to the Open files box by clicking on the open files
icon to the right. The Set Input File(s) window will be shown as
in the following figure 1-7. By default Verilog and VHDL files
will be displayed. You can select the files by left mouse clicking
and using a combination of either holding the left mouse button
down and highlighting all files at once, using the left mouse
button along with the shift-key and/or ctrl-key.

Figure 1-7 Set Input File(s) window

After the appropriate files are selected click the OK button.

6. The order of the files read in must be from the bottom up. To
arrange the files into the proper order highlight the file and drag
and drop it into the appropriate place to reflect the following
figure 1-8

Watch Design - Exemplar Tutorial

Exemplar Tutorial 1-23

Figure 1-8 Input Files order window

7. Once the files are listed the Technology must be set for the HDL
files. This must be done since Level 2 runs everything at once and
the Target Technology library end up getting loaded after reading
the files in. So when there are instantiated components in the
HDL from a particular technology, then it must be set on the files.
To do this do the following:

a) Right mouse click in the Open files window where the files
are listed.

b) Goto Set Technology All → Xilinx → 4000E

8. Click on the Next > button

9. In the Device Settings window you can set the technology. If you
are targeting the demo board make the following selections:

Xilinx 4000E

Part 4003ePC84

Speed -3

Wire Load 4003e-3_avg

The wire load wire table gives an estimate for wire length as a
function of fanout. Average in the instance “_avg”.

Exemplar Tutorial

1-24 Xilinx Development System

After the selections are chosen click on the Next > button

10. In the Global window you can Specify Clock Frequency of 40
MHz, although for the tutorial this actually is not needed as on
the demo board the clock is going to be very slow. Click the Next
> button

11. In the Output File window the Filename: should already be set to
the top level name.edf, watch.edf in this tutorial, by default. It
will also give the path to the directory it is writing it to. If you
would like to change where it writes the otuput file to click on the
folder icon and select the destination.

For the Format choose EDIF.

Check the box for Write vendor constraints file (.ncf file)

Click on the Next > button

12. The Review window will come up showing all the options you
have set and should look something like the following figure 1-9

Figure 1-9 Spectrum Level 2 Review window

Watch Design - Exemplar Tutorial

Exemplar Tutorial 1-25

Click on the Run > button. The Review window will disappear and
the Spectrum Main Window will remain open and in the right hand
side of the Main window information will scroll by as the design is
processed. The following files are written out to the working direc-
tory:

exemplar.log - text file containing all the information that scrolls by in
the Main Window

exemplar.his - text file of the command and options run

watch.sum - Summary of the area and device utilization

watch.edf - Edif netlist to go into the Xilinx core tools

watch.ncf - constraints file for timing to go into the Xilinx core tools.

Optionally you can now view the schematics of the RTL and Opti-
mized netlists by selecting: Tools → View RTL Schematic or by
selecting Tools → View Gate Level Schematic respectively. With
Spectrum Level 2 you will only be able to view the Schematics after
completing the flow.

Using the Exemplar Design Wizard, the option for entering in
constraints for pin locks is not available. Before Implementing the
design in the Xilinx tools you will need to add pin locks for two
signals into the supplied .ucf file. Using Spectrum Level 3 will
explain how to enter in the pin lock from the GUI. To add the pin
locks to the .ucf add the following two lines to the file watch.ucf:

NET reset LOC = P28;

NET strtstop LOC = P18;

Optionally you can now implement the design through the Xilinx
tools from the Exemplar main window, given that the Xilinx environ-
ment had been setup properly. This can be done by clicking on the
P&R tab in the main window choosing the Execute Place_Route
option. If you are going to be doing a Timing Simulation you will also
need to select Generate files for timing simulation, as well as
Generate bit file if you are going to download to the demoboard. For
more specific usage of the Xilinx Design Manager see the ‘Imple-
menting the Watch Design” section on Page 1-34 of this tutorial,
which will refer you to the ‘Watch Design mplementations Tools
Tutorial’.

Exemplar Tutorial

1-26 Xilinx Development System

Leonardo Spectrum Level 3
Leonardo Spectrum Level 3 has all the capabilities as described for
Level 2, plus interactivity capabilities. Level 3 supports bottom-up
and top-down design methodologies. A designer can efficiently and
economically consolidate multiple designs into one design, and
preserve and manipulate the design hierarchy. A designer may set
constraints on any level of hierarchy, and then synthesize it sepa-
rately with a different constraint. The design can be verified after
synthesis is complete by generating HDL RTL from the tool and
running it through a HDL simulator. Post place-and-route function-
ality with timing information can be verified.

Each step is explained below in the order you would run them.
You do not necessarily need to run all the steps to write out the
EDIF file.

a) (Quick Setup Tab) —Define all input files, output files, target
technology, target frequency, and effort to Run Flow to get an
output netlist for implementation. Simliar to a consolidated
Synthesis Wizard. This Step takes the place of running the
following steps b through i, not including constraints nor
report options.

b) (Technology Tab) Load Library —Reads a compiled Tech-
nology library file, then creates a library in Leonardo’s design
database. Modgen is automatically loaded with Load Library.

c) (Input Tab) Read —Loads a design from a file into the
Leonardo design database.

d) (Constraint Tab) Apply —Allows you to specify user-
defined constraints in the design.

e) (Optimize Tab) Optimize —Performs technology-specific
logic optimization and technology mapping.

f) (Timing Opt Tab) Optimize for Timing —Performs exten-
sive timing optimization on the design. This only appears if
Timing Optimization is selected.

g) (Report Tab) Report Area —Reports the accumulated area of
the present design.

h) (Report Tab) Report Delay —This option does critical path
reporting. This appears twice if Timing Optimization is

Watch Design - Exemplar Tutorial

Exemplar Tutorial 1-27

selected, otherwise it appears once. This allows comparing of
results before and after doing timing optimization.

i) (Output Tab) Write —Writes the output netlist in the user
specified format.

j) (P&R Tab) Run PR—Exemplar template that uses standard
setting to run the Xilinx core tools and to write out Timing
Simulation netlists and bit file for download to the chip.
There is also options for netlist for functional simulation pre-
Place & Route delay estimate, and running Xilinx Design
Manager only.

1. To start-up the Leonardo Spectrum Graphical User Interface, do
the following:

UNIX platform

At the UNIX prompt type the following:

Leonardo &

PC platform

On a PC double-click on the Leonardo Spectrum icon on the
desktop, or choose Programs → Leonardo Spectrum V1998.2
→ Leonardo Spectrum

The Exemplar Leonardo Spectrum license checkout window
opens as shown in the following figure 1-10.

Figure 1-10 Leonardo Spectrum license checkout Window

2. Select Leonardo Spectrum Level 3 and click the OK button

Exemplar Tutorial

1-28 Xilinx Development System

3. The Leonardo Spectrum Main Window will now show up
similiar to the following figure 1-11.

Figure 1-11 Leonardo Spectrum Main Window

4. Click on the technology tab and choose FPGA → Xilinx → 4000E
and then choose the following options as seen in figure 1-12:

Part: 4003ePC84

Speed: -3

Wire Load: 4003e-3_wc

The wire load wire table gives an estimate for wire length as a
function of fanout. Worst case in the instance “_wc”.

Click the Load Library button at the bottom of the window

Watch Design - Exemplar Tutorial

Exemplar Tutorial 1-29

Figure 1-12 Spectrum Level 3 Technology Settings window

5. In the lower right hand portion of the Main Window will show
the working directory. You can change the working directory by
going File → Change Working Directory, then browsing to the
directory and hitting the set button. You can also change the
working directory in the Input tab window, by clicking on the
open folder icon and browsing to the appropriate directory. See
figure 1-13.

6. Under the Input tab add the HDL files to be read in by clicking on
the open file icon and browsing, or right-mouse click in the
empty box under the Open files text and choose the Add Input
Files. Select the files you wich to add and click on the OK button.

7. Next the files must be read in from the bottom up. To change the
order of the listing just drag and drop the file in the appropriate
location. The order should reflect the following in figure 1-13.

Click on the Read button in the lower portion of the Input
window.

Exemplar Tutorial

1-30 Xilinx Development System

Figure 1-13 Spectrum Level 3 Input Files window

8. You will notice after the ‘READ’ operation that the ‘View RTL
Schematic’ icon is now selectable, on the toolbar just below the
pulldown menus.. Optionally you can now view the RTL Sche-
matic by choosing Tools → View RTL Schematic or by clicking
on the toolbar icon. The Schematic Viewer will come up with the
design loaded and the schematic will be shown. You will notice
as you select components in the schematic, that Spectrum auto-
matically opens the corresponding HDL code and cross-probes to
the code which created the selected logic.

9. Click on the Constraints tab. Since this design runs at quite a
slow frequency it is not necessary to enter in a Clock frequency.
You can enter in a Global timing constraint for the clock, of 40
MHz to see the resulting .ncf file file timing constraints that are
written out. Click on the Apply button. We will be using the
Input sub-tab, found at the bottom of this particular window, to
lock two signals to two pins, then use a .UCF to lock all the rest in
order to save time. See figure 1-14.

In the Input window highlight the signal reset, then give the Pin
Location of P28, then click the Apply button.

Watch Design - Exemplar Tutorial

Exemplar Tutorial 1-31

Next highlight the signal strtstop and lock it down to pin 18
using the same process as above.

Figure 1-14 Spectrum Level 3 Constraints window

10. Click on the Optimize tab. By default the architecture named
inside should already be highlighted. We will be using all default
settings, so simply click on the Optimize button. See figure 1-15.

Exemplar Tutorial

1-32 Xilinx Development System

Figure 1-15 Spectrum Level 3 Optimize window

11. Click on the Output tab. By default the Filename will be the top
level file .EDF, i.e. watch.edf in this tutorial. Select the Format to
be EDIF. Here will will need to set an EDIF output option. Click
on the EDIF Out Options tab in the lower portion of the Output
window. Here you will need to turn off the option to Allow
Writing Busses, by deslecting the checkbox. Next click on the
Apply button. See figure 1-16.

Figure 1-16 Spectrum Level 3 Edif Out Options

Watch Design - Exemplar Tutorial

Exemplar Tutorial 1-33

Click on the Write Files tab in the lower portion of the Output
window, and click on the Write button to write out the EDIF netlist as
in the following figure 1-17.

Figure 1-17 Spectrum Level 3 Write Files

The following files are written out to the working directory:

exemplar.log - text file containing all the information that scrolls by in
the Main Window

exemplar.his - text file of the command and options run

watch.sum - Summary of the area and device utilization

watch.edf - Edif netlist to go into the Xilinx core tools

watch.ncf - constraints file for timing to go into the Xilinx core tools.

Optionally you can now view the schematics of the Optimized
netlists by selecting: Tools → View Gate Level Schematic. With Spec-
trum Level 3 you will be able to view the RTL Schematic after doing
the ‘Read’ operation, and can view the Synthesized gaet level netlist
after the ‘Optimize’ operation.

Optionally you can now implement the design through the Xilinx
tools from the Exemplar main window, given that the Xilinx environ-
ment had been setup properly. This can be done by clicking on the
P&R tab in the main window choosing the Execute Place_Route
option. If you are going to be doing a Timing Simulation you will also
need to select Generate files for timing simulation, as well as

Exemplar Tutorial

1-34 Xilinx Development System

Generate bit file if you are going to download to the demoboard. For
more specific usage of the Xilinx Design Manager see the ‘Imple-
menting the Watch Design” section on Page 1-34 of this tutorial,
which will refer you to the ‘Watch Design Implementations Tools
Tutorial’.

Operating Leonardo in Batch Mode
As you were processing the Watch design in Leonardo you may
have noticed that for each command that ran, such as Load
Library, Read, and Optimize, that the exact command including
the file names appeared in blue in the Leonardo Main Window.
Each of these commands can be put into a file and run from a
command line using the ‘spectrum’ command, which is equiva-
lent to using the 4.2.2 ‘elsyn’ command. This script file has
already been created, called synthesis.tcl.

To run the Script from the Leoanrdo Spectrum GUI choose File →
Run Script and either select the file synthesis.tcl or type the file-
name in. Click the OK button and the script will be executed.

To run Leonardo Spectrum in script mode you can also type the
following from the UNIX prompt.

spectrum -file synthesis.tcl

This executes the Tcl script file and exits when finished. The file
watch.edf as well as an exemplar.log file are created. The flow
through Leonardo is fully defined by the commands in the script
and not fixed as with Galileo compatibility mode. The script can
use any command that Leonardo accepts including all Tcl and
shell commands that can be found in the path.

Implementing the Watch Design
To implement the design, refer to the Watch Design - Implementation
Tools Tutorial. You can download this file by from:

ftp://ftp.xilinx.com/pub/documentation/M1.5_tutorials/
wd_imp_15.pdf

If you are going to download and do a readback from the demo board
you can get the Watch Design - Hardware Verification Tutorial from:

Watch Design - Exemplar Tutorial

Exemplar Tutorial 1-35

ftp://ftp.xilinx.com/pub/documentation/M1.5_tutorials/
wd_hwd_15.pdf

You need the following files for implementation.

• watch.edf

• watch.ucf (provided, not created)

• tenths.ngc (A1.5, tenths.ngo for A1.4)

You may want to create a directory in which to process the design
thorugh the Xilinx core tools, such as m1_run. The above three files
will need to be copied over to this directory.

When you implement the Watch design in the Design Manager, here
are some specific options to use in the Xilinx Design Manager.

1. When you go to implement, in the Implement window, select the
Options button to open the Options dialog box.

2. In the Program Option Template, set the Simulation to the appro-
priate ModelSim Verilog or ModelSim VHDL.

3. Just to the right of this, click on the Edit Template button to open
the XC4000 Simulation Options ModelSim VHDL dialog box.

4. In the VHDL/Verilog Tab, de-select the option to Generate Test
Fixture Testbench File and click OK.

5. In the Options window, select the Produce Timing Simulation
Data option.

6. Proceed with the “Watch-Design Implementation Tools Tutorial.”

7. Also it is possible to run a post-NGDBuild and post-MAP simula-
tion, which may be helpful for debugging the design. However,
this tutorial does not include running these simulations.

Also provided is the file implment.scr which will run the necessary
programs to create the files needed for Timing Simulation and for
downloading to the demoboard. To use the script file first copy the
file implement.scr to the path/m1_run directory. You will also need to
copy the file bitgen.ut into this directory. To run the script file type the
following at the UNIX prompt: ./implmement.scr. On a PC you can
run each individual command contained in the implment.scr, from
the MS-DOS prompt.

Exemplar Tutorial

1-36 Xilinx Development System

Timing Simulation

Verilog tutorial

For the Timing Simulation you will need the time_sim.v and the
time_sim.sdf from the Xilinx core tools.

VHDL tutorial

For Timing simulation, you will need time_sim.vhd and the
time_sim.sdf files from the Xilinx core tools.

Now that the HDL netlist has been resolved into primitives, the
testbench configuration needs to be modified slightly. The
UNISIM library was referenced in the RTL simulation since the
pre-synthesis netlist contained instantiated Xilinx macros. Now
for timing simulation the UNISIM library reference must be
removed from the testbench.

Again, it is not necessary to create a clock for the WATCH testbench,
since the design already contains the OSC4 component which gener-
ates the 8MHz and 15 Hz signals. However, for simulation purposes,
it would take an enourmous amount of CPU time to simulate the
8MHz and 15Hz signals. Therefore, the testbench will create the clock
signal and bring this clock in on the external clock signal ‘ext_clk’ to
speed up the simulation. When downloading to the demoboard the
internal clock will be used, unless you are performing the Debugging
Tutorial

To perform timing simulation for your design, follow these steps.

Note: The following steps for the Veriog/VHDL timing simulation
have been combined into macro ‘do’ files. The file time_sim.do can be
run at the ModelSim prompt, followed by the mti_run_ee.do or
mti_run_pe.do file. The time_sim.do file will compile the HDL file
and then start the simulator. The mti_run_*.do file will bring up the
necessary debugging windows and run the simulation for 100 us.

Create a directory in which to run the timing simulation.

mkdir /tutor/time

8. Copy the following files to the /tutor/time directory.

Watch Design - Exemplar Tutorial

Exemplar Tutorial 1-37

Verilog tutorial

cp time_sim.v path /tutor/time/

cp time_sim.sdf path /tutor/time/

cp testbench.v path /tutor/time/

VHDL tutorial

cp time_sim.vhd path /tutor/time/

cp time_sim.sdf path /tutor/time/

cp testbench.vhd path /tutor/time/

9. As long as the MODELSIM variable is set the modelsim.ini will
be copied over automatically when using the MTI commands. To
copy the modelsim.ini file into the /tutor/time directory manu-
ally use the following:.

cp /ModelLibs/modelsim.ini /tutor/time/

10. Another way to run ModelSim is to compile all the files outside
of the GUI, then startup the GUI. To do this do the following:

Create the work directory in the /tutor/time directory.

vlib work

11. Modify the testbench to use the configuration for Timing Simula-
tion. The Verilog Testbench does not need to be modified since
the ‘vsim’ -L option will point to which library to use. Edit the
testbench.vhd file, and at the bottom there are two sections. The
first section is for functional simulation and is currently being
used. This has to be commented out by using the ‘--’ at the begin-
ning of each line starting with the line

configuration overall of testbenchf is

and ending with the line

end overall

in the Functional Sim Section.

12. In the time_sim.vhd Timing Sim Section, uncomment the lines by
removing the ‘--’ symbols, again for the line beginning with

configuration overall of testbenchf is

Exemplar Tutorial

1-38 Xilinx Development System

and ending with

end overall

13. Also in the testbench.vhd the reference to the UNISIM libraries
must be removed. Use the ‘--’ at the beginning of the following
lines to comment them out:

librarary UNISIM;

use UNISIM.vcomponents.all;

14. Save the changes and exit the testbench.vhd file.

15. Compile the HDL files by doing the following from the UNIX
prompt (UNIX), or from the ModelSim prompt (PC):

Verilog tutorial

vlog time_sim.v

vlog testbench.v

VHDL tutorial

vcom tim_sim.vhd

vcom testbench.vhd

16. Invoke ModelSim and read in the SDF file for timing simulation.

UNIX platform

From the UNIX prompt do the following:

Verilog

vsim -L simprim_ver test

VHDL

vsim -sdftyp uut=time_sim.sdf overall

PC platform

From the ModelSim prompt do the following:

Verilog

vsim -L simprim_ver test

Watch Design - Exemplar Tutorial

Exemplar Tutorial 1-39

VHDL

vsim -sdftyp uut=time_sim.sdf overall

OR

Reading the SDF in through the ModelSim GUI

Verilog

NGD2ver automatically writes out a directive, $sdf_annotate
within the time_sim.v file. This directive specifies the appropriate
SDF file to use in conjunction with the produced netlist. So, it is
unnecessary for the user to specify an option for ModelSim to
read the SDF. To load the design and to tell it to use the
simprim_ver simulation models type the following at the
ModelSim prompt:

vsim -L simprim_ver test

VHDL

Alternatively after starting up ModelSim ModelSim EE users can
select File → Load New Design. ModelSim PE users can select
File → Simulate.

The Load Design dialog box opens as shown in the following
figure 1-25.

Exemplar Tutorial

1-40 Xilinx Development System

Figure 1-18 Load Design Dialog Box

a) Click on the SDF tab of the Load Design window. Refer to the
following figure 1-26.

Figure 1-19 Specifying the SDF File

b) Click the Add button.

c) Browse for the time_sim.sdf file and select it.

d) In the Apply to Region field type the following.

/uut

e) Click on the Design tab and select the Design Unit overall
(should be in red) and Description Config.

Watch Design - Exemplar Tutorial

Exemplar Tutorial 1-41

These should both be highlighted when either is selected.

Figure 1-20 Loading the Design into MTI

f) Click the Load button.

17. View the necessary windows.

view wave signals source

18. Highlight the signals you wish to view and add them to the
waveform window using the drag and drop technique.

OR

type the following at the ModelSim prompt:

UNIX platform

add wave *

PC platform

wave *

19. At the ModelSim prompt, run for 100 us

run 100 us

Exemplar Tutorial

1-42 Xilinx Development System

20. Right click in the waveform window and zoom in. Another way
to zoom in is to press and hold the middle mouse button and
draw a square around the area to zoom in on. If you click on the
oscillator in the structure window you can then add the f15 signal
from the signals window. After simulating you can zoom in and
view the delay from the clock edge to the tenthsout, onesout, and
tensout output change.

The Exemplar Tutorial is now completed!

