
Palo Alto, CA 94303 USA

650 960-1300

901 San Antonio Road

Sun Microsystems, Inc.

picoJava-II™

Verification Guide

Part No.: 914-1681-02
March 1999

Please

Recycle

Copyright 1999 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, California 94303 U.S.A. All rights reserved.

The contents of this document are subject to the current version of the Sun Community Source License, picoJava Core (“the License”). You may

not use this document except in compliance with the License. You may obtain a copy of the License by searching for “Sun Community Source

License” on the World Wide Web at http://www.sun.com. See the License for the rights, obligations, and limitations governing use of the

contents of this document.

Sun, Sun Microsystems, the Sun logo and all Sun-based trademarks and logos, Java, picoJava, and all Java-based trademarks and logos are

trademarks, registered trademarks, or service marks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used

under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing

SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,

INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-

INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE

PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW EDITIONS OF THE

PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE

PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

Contents

Preface xix

1. Overview 1

1.1 Methodology 1

1.2 Strategy 2

1.2.1 Directed Tests 2

1.2.2 Random Events 2

1.3 Tools and Utilities 2

2. Verification Environment 5

2.1 Simulation Environment 5

2.1.1 picoJava-II Processor Models 5

2.1.2 Memory Model 6

2.1.3 Class Loader 9

2.1.4 Trap Handling 9

2.1.5 Simulation Options 10

2.1.6 Runtime Classes 10

2.2 RTL Verification 11

2.2.1 Cosimulation 11

2.2.2 RTL Monitors 12

2.3 Running Simulations 12
iii

2.4 Programming Language Interface (PLI) 13

2.4.1 $decaf_cm_load(classfile, needRes) 13

2.4.2 $decaf_cm_read(address, data, size) 13

2.4.3 $decaf_cm_write(address, data, size) 14

2.4.4 $decaf_cm_dump() 14

2.4.5 $decaf_cm_direct_dump(address, count, filename) 14

2.4.6 $decaf_cm_load_method(classFile, index, location) 15

2.4.7 $decaf_cosim(simulator) 15

2.4.8 $decaf_cosim_cntl(tclCmd) 15

2.4.9 $decaf_disasm(clkCount, address, trpFlag) 16

2.4.10 $decaf_cosim_compare_memory_at_end() 16

2.4.11 $decaf_load_traphandlers() 16

2.4.12 $decaf_tam_start(simulator) 16

2.4.13 $decaf_tam_memread(address, data, size) 17

2.4.14 $decaf_tam_memwrite(address, data, size) 17

2.4.15 $decaf_tam_exit() 17

2.4.16 $decaf_tam_poll(address, data, size, result) 17

2.4.17 $decaf_tam_intr(irl) 18

3. Test Environment 19

3.1 RT Tests 19

3.1.1 Examples 20

3.1.2 Standard Files 22

3.1.3 Compilation Directives 23

3.1.4 make Command 24

3.2 RC Tests 24

3.2.1 Memory Map 25

3.2.2 Reset Process 25
iv picoJava-II Verification Guide • March 1999

4. Test Scripts 27

4.1 Steam Script Overview 27

4.1.1 Syntax 28

4.1.2 Before Running Steam 28

4.1.3 Steam Examples 29

4.2 Steam Operation 31

4.2.1 Execution and Process 31

4.2.2 Suite Control File 33

4.2.3 Control Arguments 36

4.2.4 Operands 40

4.2.5 Cosimulation Arguments 41

4.2.6 Test Coverage and Statistics 43

4.2.7 Log Files 48

4.2.8 Timeout Control 48

4.2.9 Environment Variables 49

4.2.10 Exit Status 50

4.3 gen_sst_control Script 50

4.3.1 sst_control File 51

4.3.2 Syntax and Options 51

5. External Tools 53

5.1 Radify 53

5.2 VeriCov 54

5.2.1 Key Features 54

5.2.2 Build Script 55

5.2.3 Simulation 55

5.2.4 Coverage Report 56

5.2.5 Coverage Numbers 57
Contents v

6. Monitors 59

6.1 Overview 59

6.2 I-Buffer Monitor 60

6.3 SMU Monitor 60

6.4 FPU Monitor 61

6.5 Powerdown Monitor 61

6.6 Microcode Monitor 62

6.7 Folding Monitor 63

6.8 External Interrupt Controller 64

6.9 Random SMU Hold Generator 66

6.10 Statistics Monitor 67

6.11 Activity Monitor 67

7. Verification of the
Instruction Cache Unit (ICU) 71

7.1 Tests for Basic Functions 71

7.2 Tests for Instruction Cache Functional Units 72

7.2.1 I-Cache Control (ic_cntl) 72

7.2.2 Cache Read Misses 72

7.2.3 Noncacheable (NC) Reads 73

7.3 Tests for Instruction Buffer (I-Buffer) 73

7.3.1 I-Buffer Control (ibuf_cntl) 73

7.3.2 I-Cache Datapath (icu_dpath) 74

7.3.3 Disabled I-Cache Instructions 74

7.3.4 Invalidation of the Cache 74

7.3.5 Boot Mode 74

8. Verification of the Integer Unit (IU) 75

8.1 Functional Tests 75

8.2 Tests for Folding Combinations 81

8.3 Tests for Back-to-Back Instructions 82
vi picoJava-II Verification Guide • March 1999

8.4 Tests for Polymorphic Instructions 82

8.4.1 Local Variable and Object Field Load or Store 82

8.4.2 Microcode Instructions 83

8.4.3 Boundary Conditions 85

8.5 Miscellaneous Tests 86

9. Verification of the
Floating Point Unit (FPU) 89

9.1 Overview 89

9.2 Functional Tests 90

10. Verification of the Data Cache Unit (DCU) 95

10.1 Test Coverage 96

10.2 Functional Tests 98

10.2.1 Arbiter 98

10.2.2 Address Control 99

10.2.3 Aligner Control 99

10.2.4 Miss Control 99

10.2.5 Writeback Control 99

10.2.6 Data Cache Datapath 100

10.3 Tests for Noncacheable Loads 100

10.4 Tests for Noncacheable Stores 100

10.5 Tests for Zeroing Out of Cache Lines 101

10.6 Tests for Flushing of Cache Comparisons 101

10.7 Tests for Cache-Indexed Flushing 102

10.8 Tests for Disabling of the Data Cache 102

10.9 Tests for Diagnostic Reads and Writes 102

10.10 Tests for Invalidation of the Cache 102

10.11 Tests for Dispatches of Load or Store Instructions 103

10.12 Other Data Cache Tests 103
Contents vii

11. Verification of the
Stack Manager Unit (SMU) 105

12. Traps and Interrupts 109

12.1 Exception Handlers 109

12.2 Traps and Exceptions 110

12.2.1 Power-On Reset (POR) 110

12.2.2 Asynchronous Error 111

12.2.3 Data Access Memory Errors 112

12.2.4 Instruction Access Memory Errors 112

12.2.5 Privileged Instructions 112

12.2.6 Illegal Instructions 113

12.2.7 breakpoint1 113

12.2.8 breakpoint2 116

12.2.9 Misalignment of Memory Addresses 119

12.2.10 Data Access I/O Errors 120

12.2.11 OPLIM Traps 120

12.2.12 Soft Traps 121

12.2.13 ldiv 121

12.2.14 lmul 121

12.2.15 lrem 121

12.2.16 Runtime Arithmetic 121

12.2.17 Runtime Null Pointers 121

12.2.18 Emulation of Zero Lines 122

12.2.19 Emulation of FP Instructions 122

12.2.20 Breakpoint Handlers 123

12.2.21 Unimplemented Instructions 123

12.2.22 Memory Protection Fault 123

12.2.23 Out-of-Bounds Runtime Index 124

12.2.24 Lock Count Overflow Traps 125

12.2.25 Lock Enter Miss Traps 125
viii picoJava-II Verification Guide • March 1999

12.2.26 Lock Exit Miss Traps 125

12.2.27 Lock Release Traps 126

12.2.28 Garbage Collection Notify Traps 126

12.2.29 Trap Priority Tests for Two Exceptions 127

12.2.30 Trap Priority Tests with Three Exceptions 130

12.3 Interrupts 131

12.4 Corner Cases for Trapping Instructions 131

Index 139
Contents ix

x picoJava-II Verification Guide • March 1999

Figures

FIGURE 2-1 Memory Map 7

FIGURE 4-1 An Example of a Suite Control File 33

FIGURE 4-2 Another Example of a Suite Control File 34
xi

xii picoJava-II Verification Guide • March 1999

Tables

TABLE P-1 Typographic Conventions xxi

TABLE 1-1 External Tools and Utilities for Verification 2

TABLE 1-2 Tools and Utilities Developed at Sun 3

TABLE 2-1 Special Addresses for Simulation 8

TABLE 3-1 Test Environment Standard Files 22

TABLE 4-1 Suite Control File Keywords 35

TABLE 4-2 Control Arguments 36

TABLE 4-3 Operands 40

TABLE 4-4 Arguments in the Default steam.plusargs file 42

TABLE 4-5 Special Characters for format_string 46

TABLE 4-6 Environment Variables in the Test Execution Script 49

TABLE 4-7 Exit Status Types for the Test Execution Script 50

TABLE 4-8 gen_sst_control Command Line Options 51

TABLE 5-1 CPU Test Coverage 57

TABLE 5-2 Block Coverage for Core Units 57

TABLE 6-1 External Interrupt Controller Arguments 64

TABLE 7-1 Test Coverage for the ICU 71

TABLE 8-1 Functional Tests for the IU 75

TABLE 8-2 Hazard Tests for the IU 81
xiii

TABLE 8-3 Tests for Back-to-Back Instructions 82

TABLE 8-4 Microcode Tests for the IU 83

TABLE 8-5 Boundary Tests for the IU 85

TABLE 8-6 Miscellaneous IU Tests 86

TABLE 9-1 Functional Tests for the FPU 90

TABLE 10-1 Test Coverage for the DCU 96

TABLE 11-1 Functional Tests for the SMU 105

TABLE 12-1 Tests for Asynchronous Errors 111

TABLE 12-2 Tests for Data Access Memory Errors 112

TABLE 12-3 Tests for Instruction Access Memory Errors 112

TABLE 12-4 Test for Privileged Instructions 113

TABLE 12-5 Tests for Illegal Instructions 113

TABLE 12-6 Tests for breakpoint1 114

TABLE 12-7 Tests for breakpoint2 117

TABLE 12-8 Tests for Memory Address Misalignment 120

TABLE 12-9 Tests for OPLIM Traps 120

TABLE 12-10 Tests for Runtime Null Pointers 122

TABLE 12-11 Tests for Zero Line Emulation 122

TABLE 12-12 Tests for Emulation of FP Instructions 122

TABLE 12-13 Tests for Unimplemented Instructions 123

TABLE 12-14 Tests for Memory Protection Faults 124

TABLE 12-15 Tests for Out-of-Bounds Runtime Index Exceptions 125

TABLE 12-16 Tests for Lock Count Overflow Traps 125

TABLE 12-17 Tests for Lock Release Traps 126

TABLE 12-18 Tests for Garbage Collection Notify Traps 126

TABLE 12-19 Tests for Memory Protection with Other Exceptions 127

TABLE 12-20 Tests for breakpoint1 with Other Exceptions 127

TABLE 12-21 Tests for breakpoint2 with Other Exceptions 128
xiv picoJava-II Verification Guide • March 1999

TABLE 12-22 Tests for Instruction Access Errors with Other Exceptions 128

TABLE 12-23 Tests for OPLIM with Other Exceptions 128

TABLE 12-24 Tests for Mem_address_not_aligned with Other Exceptions 129

TABLE 12-25 Test for Data Access Memory Error with Other Exceptions 129

TABLE 12-26 Test for Data Access I/O Error with Other Exceptions 129

TABLE 12-27 Test for NullPtr and IndexOutOfBnd 129

TABLE 12-28 Tests for Memory Protection Errors with Other Exceptions 130

TABLE 12-29 Tests for breakpoint1 with Other Exceptions 130

TABLE 12-30 Tests for OPLIM with Other Exceptions 131

TABLE 12-31 Getstatic and Putstatic 131

TABLE 12-32 Getfield and Putfield 132

TABLE 12-33 Invokestatic 132

TABLE 12-34 Invokevirtual 133

TABLE 12-35 ldc2_w 135

TABLE 12-36 ldc 135

TABLE 12-37 ldc_w 135

TABLE 12-38 Lookupswitch 136

TABLE 12-39 Newarray 136

TABLE 12-40 Anewarray 136

TABLE 12-41 Multianewarray 136

TABLE 12-42 Invokespecial 137

TABLE 12-43 Invokeinterface 137

TABLE 12-44 athrow 137
Tables xv

xvi picoJava-II Verification Guide • March 1999

Code Examples

CODE EXAMPLE 6-1 Recommended Coding Sequence for the Interrupt Handler 65

CODE EXAMPLE 6-2 Example of Interrupt Handler Code in Verilog 66
Code Examples xvii

xviii picoJava-II Verification Guide • March 1999

Preface

This guide provides a comprehensive suite of tests and a simulation environment to

use in verifying the functionality of the picoJava-II core.

This guide does not cover performance validation or the verification of circuits,

physical design, timing, and the library.

Organization of This Book

This guide is divided into two parts, with an index at the end.

● Part I: picoJava-II Verification Environment and Tools contains these chapters:

■ Chapter 1, Overview
■ Chapter 2, Verification Environment
■ Chapter 5, External Tools
■ Chapter 3, Test Environment
■ Chapter 4, Test Scripts
■ Chapter 6, Monitors

● Part II: picoJava-II Verification Tests contains these chapters:
■ Chapter 7, Verification of the Instruction Cache Unit (ICU)
■ Chapter 8, Verification of the Integer Unit (IU)
■ Chapter 9, Verification of the Floating Point Unit (FPU)
■ Chapter 10, Verification of the Data Cache Unit (DCU)
■ Chapter 11, Verification of the Stack Manager Unit (SMU)
■ Chapter 12, Traps and Interrupts
xix

Related Books and References

Three books form the documentation set for the picoJava-II release:

■ picoJava-II Programmer’s Reference Manual
■ picoJava-II Microarchitecture Guide
■ picoJava-II Verification Guide (this book)

The following publications are reference material for the subject matter of the

documentation set:

■ Lindholm, Tim, and Frank Yellin: The Java Virtual Machine Specification, Addison-
Wesley, ISBN 0-201-63452-X

■ IEEE Standard Test Access Port and Boundary-Scan Architecture, ANSI/IEEE Std.
1149.1-1990.

■ IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Std. 754-1985.

■ Ungar, David: ACM SIGPLAN Notices, 19(5):157-167: Generation Scavenging: A
Non-disruptive High Performance Storage Reclamation Algorithm, April 1984.

■ Wilson P., and T. Moher: ACM SIGPLAN Notices, 24(10):23-35: A Card-marking
Scheme For Controlling Intergenerational References In Generation-based Garbage
Collection On Stock Hardware, 1989.

■ Steele, Guy L.: Communications of the ACM, 18(9): Multiprocessing Compactifying
Garbage Collection, September 1975.

■ Hudson, R., and J. E. B. Moss: Proceedings of International Workshop on Memory
Management: Incremental Garbage Collection For Mature Objects, St. Malo, France,

September 16-18, 1992.
xx picoJava-II Verification Guide • March 1999

Typographic Conventions

TABLE P-1 describes the typographic conventions used in this book.

Sun Documents

The SunDocsSM program provides more than 250 manuals from Sun Microsystems,

Inc. If you live in the United States, Canada, Europe, or Japan, you can purchase

documentation sets or individual manuals using this program.

For a list of documents and how to order them, see the catalog section of the

SunExpress™ Internet site at http://www.sun.com/sunexpress .

TABLE P-1 Typographic Conventions

Typeface or Symbol Meaning Example

AaBbCc123 The names of commands,

instructions, files, and

directories; on-screen

computer output; email

addresses; URLs

Edit your .login file.

Use ls -a to list all files.

machine_name% You have mail.

AaBbCc123 What you type, contrasted

with on-screen computer

output

machine_name% su
Password:

AaBbCc123 Command-line placeholder:

replace with a real name or

value

To delete a file, type rm filename.

AaBbCc123 Book titles, section titles in

cross-references, new words

or terms, or emphasized

words

Read Chapter 6 in User’s Guide.

These are called class options.

You must be root to do this.
Preface xxi

Sun Documentation Online

The docs.sun.com Web site enables you to access Sun® technical documentation

online. You can browse the docs.sun.com archive or search for a specific book title

or subject. The URL is http://docs.sun.com/ .

Disclaimer

The information in this manual is subject to change and will be revised from time to

time. For up-to-date information, contact your Sun representative.

Feedback

Email your comments on this book to: picojava-doc@sun.com .

Acknowledgment

Many people—picoJava-II licensees, engineers, programmers, marketers—

contributed to this book. We thank them for their input, feedback, and support.
xxii picoJava-II Verification Guide • March 1999

PART I picoJava-II Verification Environment

and Tools

CHAPTER 1

Overview

As processor design becomes increasingly complex, verification plays an important

role in the design cycle. This chapter summarizes the verification process for the

picoJava-II CPU core system at both the register transfer language (RTL) level and

the gate level. The chapter includes these sections:

■ Methodology on page 1

■ Strategy on page 2

■ Tools and Utilities on page 2

1.1 Methodology
The picoJava-II CPU core, a reusable core for a variety of Java™ processors, is a

synthesizable RTL netlist and can be targeted to different libraries.

There are two levels of verification:

■ Stand-alone testing (SAT)

■ Full core-level testing, the methodology for which is cosimulation between the

architecture simulator and the RTL netlist

In addition, you can synthesize the RTL netlist into a gate-level netlist to ensure that

the design meets the timing budget. Usually, several iterations are necessary to

shorten the longest timing paths to meet the goals.

Finally, gate-level simulation is recommended to ensure that the synthesis is correct.
1

1.2 Strategy
You can use directed tests and Verilog-based random events to achieve high

confidence within a reasonable time frame.

1.2.1 Directed Tests

Directed tests covers the major blocks in the design: the Instruction Cache Unit

(ICU), the Data Cache Unit (DCU), the Integer Unit (IU), the microcode, the Stack

Manager Unit (SMU), the trap, the Floating Point Unit (FPU), the interrupt, the

power management unit, and exception logic.

See the various chapters in this book for details of testing the major blocks.

1.2.2 Random Events

The tests use random events to test features, such as interrupts, interrupt priority,

and powerdown mode. For details of the algorithm, see External Interrupt Controller
on page 64.

1.3 Tools and Utilities
TABLE 1-1 lists the external tools and utilities available for verification.

TABLE 1-1 External Tools and Utilities for Verification

Tool or Utility Purpose

Verilog-XL RTL or gate simulation

VCS RTL or gate simulation

SignalScan RTL or gate debugging

VeriCov Measurement of test coverage

Radify Optimization of Verilog designs

Tool Control Language (Tcl) Scripting language for random instruction

testing
2 picoJava-II Verification Guide • March 1999

Additional tools and utilities developed at Sun are listed in TABLE 1-2.

TABLE 1-2 Tools and Utilities Developed at Sun

Tool or Utility Purpose

Class loader Loading test programs into simulation memory

Runtime disassembler Disassembler for test programs

PJSIM Instruction simulator

Cosimulation Cross-checking of results between PJSIM and

RTL

Java-related tools, such as Java virtual

machine, Java Assembler (JASM), and

Java Bytecode Disassembler (JDIS)

Assembler and disassembler for picoJava-II

instructions
Chapter 1 Overview 3

4 picoJava-II Verification Guide • March 1999

CHAPTER 2

Verification Environment

This chapter describes the RTL (Register Transfer Level) simulation environment. It

contains the following sections:

■ Simulation Environment on page 5

■ RTL Verification on page 11

■ Running Simulations on page 12

■ Programming Language Interface (PLI) on page 13

2.1 Simulation Environment
The picoJava-II core simulation environment is called DSV (Decaf System

Verification).

2.1.1 picoJava-II Processor Models

The picoJava-II processor core can be simulated at two different levels of abstraction:

■ A detailed RTL model which can be simulated using a Verilog language

simulator, or

■ A coarse-grained instruction-accurate simulator written in C.

The RTL model is used for implementing the design in silicon and verifying its

functionality prior to tapeout, while the instruction-accurate simulator (ias) is used

for software development and debugging and as a golden reference model for

verifying the RTL design.
5

The picoJava-II distribution contains a system simulation environment to run and

debug programs on both the ias and RTL models. The simulation environment,

called DSV (Decaf System Verification), is embedded in these two models, and

provides functionality such as simulating memory accesses, loading class files into

memory, and controlling simulation.

The RTL model is invoked using the command pj2vlog or pj2vcs (depending on

which Verilog simulator you use). The instruction-accurate model is invoked using

the command ias .

Note – Parts of the picoJava-II documentation may refer to the instruction simulator

as PJSIM rather than ias . Both names refer to the same program.

Note that the picoJava-II environment does not contain a software model which is

"cycle-accurate." That is, the software does not model the processor exactly at cycle

boundaries. Programs for which cycle-accurate information is desired must be

simulated on the RTL, which is slow, but produces exact results.

2.1.2 Memory Model

picoJava-II main memory functionality is simulated using a C library

(libloader.a). The picoJava-II RTL testbench includes a simple memory

controller, which acts as a broker between requests made by the picoJava-II core and

the C memory model. The memory controller calls the C library using PLI

(Programming Language Interface) functions. PLI functions are defined in the file

tools/ldr/src/rw.c . For descriptions of the PLI functions, see Programming
Language Interface (PLI) on page 13.

The structure of the C main memory model is such that exactly the same library is

linked into the instruction-accurate simulator. ias uses the same interface functions

to access main memory as the RTL. However, ias and RTL have independent

implementations for cache memories. ias implements a high-level cache simulator

(implemented in tools/cache/src/cache.c) while RTL models detailed cache

control and datapath logic, using behavioral models of memory megacells to

simulate storage for data, tag and status RAMs in both caches.

Some locations in the picoJava-II memory address space have special meaning in the

simulation environment (for both ias and the RTL model). FIGURE 2-1 and TABLE 2-1

for a list of these special addresses.
6 picoJava-II Verification Guide • March 1999

FIGURE 2-1 Memory Map

/* there are 2 valid memory areas: from 0 to CM_SIZE - 1 and from
 SCRATCH_START to SCRATCH_START+ SCRATCH+SIZE - 1 */
EXTERN unsigned int CM_SIZE;/* not hard-coded any more, but a
variable in cm.c, default 16M */

#define SCRATCH_START 0x2fff0000 /* scratch memory area start */
#define SCRATCH_SIZE 0x20000 /* size of scratch memory area */
#define SYSCALL_MAGIC_ADDR 0xffe8 /* byte address */
#define BAD_MEMORY_START 0x2fffbad0 /* accesses to bad area return
error ack’s */
#define BAD_IO_START 0x3000bad0
#define BAD_SIZE 16 /* size of bad area */
#define CONSOLE_ADDR 0x2f0000c0 /* writes to console address
print a character */

/* ias profiler addresses */
#define PROFILER_CMD_ADDR 0xffc0
#define PROFILER_DATA_ADDR 0xffc4

/* regions in common memory */
#define RESET_ADDRESS 0x0
#define TRAP_ADDRESS 0x00010000 /* trap table */
#define CLASS_ADDRESS 0x00020000 /* class loading area */
#define HEAP_ADDRESS 0x00100000 /* heap start */
#define STACK_BASE 0x00400000 /* initial stack bottom area */

/* memory addresses with special meaning for simulation */
#define FLUSH_LOCATION 0xfff0
#define RESETCODE_USE_LOCATION 0xffe8
#define TRAP_USE_LOCATION 0xffec
#define WATERMARK_LOCATION 0xffe4
#define PERF_COUNTER_ADDRESS 0xffdc
#define COSIM_LOCATION 0xffe0
#define END_OF_SIM_LOCATION 0xfffc
#define INTR_ACK_REGISTER 0xfff8
#define STOP_RANDOM_INTERRUPT 0xfff4

/* locations to store CP info in case of class not found error */
#define ERROR_CP_LOCATION 0xffd0
#define ERROR_CPINDEX_LOCATION 0xffd4
Chapter 2 Verification Environment 7

TABLE 2-1 lists special addresses for simulation.

TABLE 2-1 Special Addresses for Simulation

Address Description

0xfffc Writes to this address to end the simulation.

0xfff8 Writes 0xacc to this address to acknowledge the interrupt controller and

reset the pj_irl pins to 0.

0xfff4 Writes to this address to disable random irl or nmi interrupts.

0xfff0 Writes 0xfxxx to this address to invalidate the data and instruction

caches before running the reset code.

The class loader writes 0xfxx to this address to indicate that it has

loaded a class that has a clinit method.

Writes 0xfx to this address to use the counter version (instead of the

abort version) of the exception handler.

Writes 0xf to this address to flush the stack and data and instruction

caches at the end of simulation.

0xffec Writes 0xffffffff to this address to indicate to trap handlers that the

system should use handles while allocating and referencing objects.

0xffe4 Writes 0x10 to this address to indicate to reset code that the low and

high watermarks for the dribbler should be set to 48 and 56,

respectively.

Writes 0x1 to indicate to reset code that the low and high watermarks

for the dribbler should be set to 8 and 16, respectively.

0xffe0 Writes to this address to enable full compare during cosimulation. (The

default is small compare.)

0xffdc Writes 0x1 to this address to enable gathering of performance statistics

by the performance monitor.

Writes 0x0 to this address to disable gathering of performance statistics

by the performance monitor.

0xffd4 Writes to this address to store the constant pool value for a missing

class, field, or method.

0xffd0 Writes to this address to store the index of a missing class, field, or

method.

0xf000 to 0xf384 Writes to an address in this range to store the value of the exception

counter.
8 picoJava-II Verification Guide • March 1999

2.1.3 Class Loader

Classes are loaded into picoJava-II memory using a class loader. (See the .c files in

tools/src/ldr/src .) The class loader code is shared between the RTL model and

ias. Again, the class loader functionality is part of libloader.a , and the RTL

accesses it using PLI functions, while ias calls the class loader functions directly.

The picoJava-II environment currently supports only static class loading. That is, all
classes that are required during a run must be loaded in memory before the program

begins execution. Classes are loaded in the RTL model by specifying the

+class+ classname.class option and in ias using the _loadClass_ command.

The class loader reads class files and converts the class file data (such as methods,

fields and constant pool information) to an internal runtime representation. This

runtime representation is compatible with that needed by picoJava-II instructions

that expect a certain data layout (such as invoke_*_quick instructions and array

access instructions). The layout expected by these instructions is described in the

picoJava-II Programmer’s Reference Manual. The detailed class layout at runtime is

described as C structures in the file tools/ldr/src/decaf.h . You can change this

structure, but if so you must ensure that the new structure is compatible with that

expected by picoJava-II hardware instructions.

In addition to loading .class files, the class loader loads data from files called

classname.init and classname.binit . This feature allows tests to specify initial

values for certain memory addresses. For the expected format of the .init and

.binit files, see the Web pages included with the picoJava-II distribution.

The class loader does not perform any verification on class files it loads into

memory.

2.1.4 Trap Handling

At startup, the class loader in both ias and the RTL model loads all trap handlers by

default, and sets up the trap table to point to the trap handlers.

Each trap handler is read in as a .class file. However, a class file can have

instructions specific to the picoJava-II instruction set, which are not present in the

Java virtual machine instruction set. The trap table entry is set to point to the code

for a static method inside the class called main, which should take no arguments and

return a void. The pointer to the constant pool structure for this class is placed at the

word in the trap table immediately following the pointer to the trap handler code.

Each trap table entry is 8 bytes long. The position of the trap table is assumed to be

fixed at a certain address. Initialization code must set the trapbase register in the

processor to this fixed address before any traps are generated. For details on the

trapbase register and the trap table, see Chapter 7, Traps and Interrupts, in the

picoJava-II Programmer’s Reference Manual.
Chapter 2 Verification Environment 9

Trap handler class files have predefined names for each trap. Trap handlers are

usually written in the picoJava-II assembly language. Sample implementations are

provided with the picoJava-II simulation environment in the directories design/
traps and design/exception .

Note – The trap handlers provided with the picoJava-II environment are examples

only. You must customize them for your system.

2.1.5 Simulation Options

The pj2vcs and pj2vlog commands accept options for controlling the simulation.

Some of these options are conveyed to the test program by storing special values in

predefined locations in memory. The test program checks these predefined locations

and takes the appropriate action. For example, to set low and high watermarks for

the dribbler, you can use the +minwm and +maxwmflags. Using these flags creates an

initialization in both ias and RTL memory at location 0xffe4 before the test program

begins execution. When the default reset code begins executing, it reads memory

location 0xffec and sets up the watermarks accordingly.

When a test is run only on ias , the flags must be set up manually or specified in the

.iasrc file.

Other options specified to pj2vcs or pj2vlog control the behavior of the hardware

simulation environment. For example, the +int_random switch causes external

interrupts to be signalled to the processor at random. As another example, the

+rand_ack1 option controls the timing of memory controller acknowledgements to

the CPU.

The complete list of flags accepted by the RTL model is described in the Web pages

included with the picoJava-II distribution. Also, you can type pj2vcs -usage or

pj2vlog -usage for a list of options.

2.1.6 Runtime Classes

A limited implementation of some of the basic runtime classes needed to run Java

programs is provided with the picoJava-II distribution.

Note – Runtime classes are provided for the sole purpose of running picoJava-II

tests. These classes are not meant to be a complete (or compatible) implementation

of the runtime classes required by the Java platform.
10 picoJava-II Verification Guide • March 1999

The picoJava-II environment provides some basic operating system functionality

such as memory allocation using a small kernel embedded in the emulation trap

handlers. There is no support for multi-threading and garbage collection in this

runtime environment.

2.2 RTL Verification
The RTL model is verified through self-checking tests, cosimulation, and RTL

monitors.

2.2.1 Cosimulation

The primary means of verifying the picoJava-II RTL is by running test programs on

the RTL model. Most test programs developed for the RTL model are self-checking.

That is, they generate a result indicating success or failure. In addition to self-

checking tests, cosimulation is a powerful way to verify the RTL design. In

cosimulation, the RTL model is run in lock-step with the ias model running the

same program, while comparing the architectural state between the ias and the RTL

model after every instruction. This allows tests which are not self-checking to be

used to verify the RTL model. Of course, self-checking tests can also be run on either

the RTL model or on ias standalone.

The RTL model runs in cosimulation mode if you specify the +cosim+ias option to

pj2vlog or pj2vcs . The RTL model then starts up a slave ias process. As

instructions complete in the RTL pipeline, the RTL model sends commands to ias to

step forward for the same number of instructions. (The RTL model can complete up

to 4 instructions at a time, because it folds up to 4 instructions together. For

information about folding, see the picoJava-II Microarchitecture Guide.) Along with

every step instruction, the RTL model also sends ias its own register values and

top-of-stack entries after those instructions have completed execution. After ias has

stepped the same number of instructions as the RTL model, it compares the state

sent across by the RTL model with its own state, and flags any mismatches. At the

end of simulation, caches of both models are flushed and the contents are compared.

For answers to frequently-asked questions about cosimulation, see the Web pages

included with the picoJava-II distribution.
Chapter 2 Verification Environment 11

2.2.2 RTL Monitors

Another way to verify the RTL design is by using the monitors included in the

picoJava-II RTL simulation environment. Monitors are assertion checkers that run

concurrently with the RTL simulation, and constantly check if properties which

should be true in the system are indeed true. If there is an assertion failure, the

monitor halts the RTL simulation with an error code.

You can also use the monitors to count the occurrences of certain events. These

statistics can be used to analyze performance or to estimate power consumption. For

information about the monitors, see Chapter 6, Monitors.

2.3 Running Simulations
The picoJava-II distribution provides a test suite containing subsuites that

exhaustively test all functionality in the processor. A test is usually a program

written in picoJava-II assembly language and assembled using the picoJava-II

assembler, or a program written in the Java programming language, and compiled

using a Java compiler. The tests may be run either on ias alone, or on the RTL

model and ias together (in cosimulation mode).

To run all the tests in the verification suite, you need to perform the following basic

steps:

1. Build ias .

The distribution provides a default binary for SPARC/Solaris platforms.

2. If you want to run the tests on RTL, build the RTL model.

This creates a binary called pj2vcs or pj2vlog .

3. Compile the test suites you would like to run.

The test suites are provided in source form (either picoJava-II assembly language or

the Java programming language). The source must be compiled to create .class
files that can then be loaded in the simulators and run.

4. Run the tests.

Run the tests on either the ias or the RTL model directly, or use the Steam script to

run tests. Steam is a perl script that provides a flexible environment in which to run

large batches of tests and report their results. For information about Steam, see

Chapter 4, Test Scripts.

For more detailed information about running simulations, see the Web pages

included with the picoJava-II distribution.
12 picoJava-II Verification Guide • March 1999

2.4 Programming Language Interface (PLI)
This section describes the routines for the PLI functions.

2.4.1 $decaf_cm_load(classfile, needRes)
The following function—

$decaf_cm_load(classfile, needRes)
reg[8*SIZE:0] classFile;
integer needRes;

—loads a class file and its superclasses (if required) into the class area in the

common memory.

The arguments are:

■ classfile: the name of either a class file in the current work directory or a DSV

system class file

■ needRes: not a valid argument for now

To load all the class files, call this function multiple times.

The class paths are the current working directory and $DSVHOME/class .

2.4.2 $decaf_cm_read(address, data, size)
The following function—

$decaf_cm_read(address, data, size)
reg[31:0] addr;
reg[31:0] data;
integer size;

—performs a common memory read from the specified address (address). It reads the

data and puts them into the second argument (data). The size of the read is 1, 2, or 4

bytes depending on the size parameter being 0, 1, or 2, respectively.

Call this function when the picoJava-II core performs a memory read. This function

extracts the address and updates the data bus according to the contents of memory

at that address.
Chapter 2 Verification Environment 13

2.4.3 $decaf_cm_write(address, data, size)
The following function—

$decaf_cm_write(address, data, size)
reg[31:0] addr;
reg[31:0] data;
integer size;

—performs a common memory write from the specified address (address). It reads

the data and puts them into the second argument (data). The size of the write is 1, 2,

or 4 bytes depending on the size parameter being 0, 1, or 2, respectively.

Call this function when the picoJava-II core performs a memory write. This function

extracts the address and data values and updates the contents of memory at that

address.

2.4.4 $decaf_cm_dump()

The $decaf_cm_dump() function dumps the class structure in the common

memory in stdout . No argument is necessary.

2.4.5 $decaf_cm_direct_dump(address, count,
filename)
The following function—

$decaf_cm_direct_dump(address, count, filename)
reg[31:0] addr;
integer count;
string filename;

—dumps the common memory content from the address to the file as specified. The

count is in bytes.
14 picoJava-II Verification Guide • March 1999

2.4.6 $decaf_cm_load_method(classFile, index,

location)

The following function—

$decaf_cm_load_method(classFile, index, location)
string classFile;
integer index;
integer location;

—loads a method to the common memory.

The arguments are:

■ classFile: the name of the class file

■ index: the index of the method to be loaded

■ location: the memory location where the method is stored

2.4.7 $decaf_cosim(simulator)
The following function—

$decaf_cosim(simulator)
string simulator;

—sets up the cosimulation environment by creating the instruction simulator

process and connecting it with UNIX pipes.

The argument simulator is the standard plus argument with the leading word

+cosim . The next plus precedes the executable name of the instruction simulator.

For example, +cosim+ias means that the executable ias is the instruction

simulator (PJSIM).

2.4.8 $decaf_cosim_cntl(tclCmd)

The following function—

$decaf_cosim_cntl(tclCmd)
string tclCmd;

—sends the Tcl commands as specified to the instruction simulator. The

communication is synchronous; the function waits until it receives an

acknowledgment. This function is used extensively for cosimulation.
Chapter 2 Verification Environment 15

2.4.9 $decaf_disasm(clkCount, address, trpFlag)

The following function—

$decaf_disasm(clkCount, address, trpFlag)
integer clkCount;
reg [31:0] address;
integer trpFlag;

—is the entry point for the real address disassembler.

The arguments are:

■ clkCount: the current clock count

■ address: the address of current pc

■ trpFlag: the flag that indicates whether this is a trapped instruction

2.4.10 $decaf_cosim_compare_memory_at_end()

The $decaf_cosim_compare_memory_at_end() function performs a memory

comparison from the memory transaction records. We usually call this function once

at the end of simulation.

2.4.11 $decaf_load_traphandlers()

The $decaf_load_traphandlers() function loads all emulation traps and

exceptions into the common memory. We usually call this function at the initial

stage.

2.4.12 $decaf_tam_start(simulator)
The following function—

$decaf_tam_start(simulator)
string simulator;

—sets up the environment by creating the instruction simulator process and

connecting it with UNIX pipes.

The argument simulator is the standard plus argument with the leading word +tam .

The next plus precedes the executable name of the instruction simulator. For

example, +tam+tam means that the executable tam is the instruction simulator.
16 picoJava-II Verification Guide • March 1999

2.4.13 $decaf_tam_memread(address, data, size)
The following function—

$decaf_tam_memread(address, data, size)
reg [31:0] address;
reg [31:0] data;
integer size;

—performs a memory read from the specified address (address). It reads the data and

puts them into the second argument (data). The size is the power of 2, such as 0, 1,

and 2.

2.4.14 $decaf_tam_memwrite(address, data, size)
The following function—

$decaf_tam_memwrite(address, data, size)
reg [31:0] address;
reg [31:0] data;
integer size;

—performs a common memory write to the specified address (address). It reads the

data from the second argument (data). The size is the power of 2, such as 0, 1, and 2.

2.4.15 $decaf_tam_exit()

The $decaf_tam_exit() function directs the instruction simulator to exit.

2.4.16 $decaf_tam_poll(address, data, size, result)
The following function—

$decaf_tam_poll(address, data, size, result)
reg [31:0] address;
reg [31:0] data;
integer size;
reg [31:0] result;

—polls the instruction simulator for the necessary execution status and initiates a

transaction cycle accordingly.
Chapter 2 Verification Environment 17

2.4.17 $decaf_tam_intr(irl)
The following function—

$decaf_tam_intr(irl)
integer irl;

—notifies the instruction simulator of an interrupt. The argument irl stands for

interrupt level.
18 picoJava-II Verification Guide • March 1999

CHAPTER 3

Test Environment

This chapter describes the picoJava-II test environment. It contains the following

sections:

■ RT Tests

■ RC Tests on page 24

There are two types of tests in the picoJava-II core verification environment: RT
(reset test) and RC (run code) tests. RT tests run as raw reset code which the picoJava

processor is simulated to execute at poweron. RC tests are usually larger tests that

depend on standard startup code to run and to initialize the chip before they are

invoked.

3.1 RT Tests
RT tests run as part of reset code. To make it easy to write RT tests, there is a

standard template for the reset code (in sim/include/reset.code) which

initializes chip registers, reports status at the end of the test, and so on. The template

jumps to a label called Main and the test body must push the status code on the

stack and jump back to a label called Check.

If you need custom initialization to write an RT test, you can either write the

complete reset code and assemble it using the JASM assembler, or modify the

template and use that template in your test. Test cases written to use the template

usually have a .code extension.

A set of scripts converts the .code file (after concatenating the template, expanding

macros, and so on) to a .jasm file, which is compiled by the JASM assembler to a

.class file. For a description of the reset process, see Reset Process on page 25.
19

Examples of .code test cases are available under sim/test/pico_vts/basic .

Standard makefiles in these directories have rules to convert the .code files to

.class files, which can then be run on the software simulator (ias) or the RTL

model.

A class file compiled from an RT test must be present as reset.class in the

directory where the test is run. If you use the Steam script, this is automatically done

for you. For information about Steam, see Section 4.1, Steam Script Overview, on page

27.

3.1.1 Examples

This section provides examples of a test with custom reset code, and a test that uses

the template.

RT Test with Custom Reset Code

1. Create a test called my_test.jasm that includes all the functionality required to
run as reset code.

That is, it includes the initialization for the machine registers, enables the dribbler,

and so on.

2. Create my_test.class

% jasm my_test.jasm

3. Copy my_test.class to reset.class .

% cp my_test.class reset.class

4. Run ias . This loads reset.class at address 0, as reset code.

% ias

Note that the simulation environment (for both RTL and ias) loads reset.class
from the current directory or if not there, from $DSVHOME/class . For information

about class loading, see Section 2.1.3, Class Loader, on page 9.

RT Test Using the Template

You can write a test called my_test.code which includes only the functionality

required by your test, but the test still has to run as part of reset code. In this case,

you must provide a label called Main in your test, and jump back at the end of the

test to a label called Check. The top-of-stack element when you jump back must be

an integer signifying whether the test passed or not. (A 0 value indicates success; a
20 picoJava-II Verification Guide • March 1999

non-0 value indicates failure.) The MakeTest script converts the .code file by

expanding global macros and concatenating the reset template into a .class file.

You need to have perl installed in order to run Maketest.

You can follow these steps:

% mkdir class

% setenv TEST_ENV_INCLUDE sim/include

% cd class

% Maketest my_test $TEST_ENV_INCLUDE/macro.inc $TEST_ENV_INCLUDE/
reset.code

% cp my_test.class reset.class

% ias (loads up my_test.class as reset.class)

In most test suite directories, these actions are automatically performed by the

Makefile in the directory when you build the tests. For information on how to

compile tests, see the online documentation.
Chapter 3 Test Environment 21

3.1.2 Standard Files

TABLE 3-1 describes the standard files for the test environment:

1Create this file in your test directory. All other files in this table are in the default setup.

TABLE 3-1 Test Environment Standard Files

Name Description

/sim/include/MakeTest This script merges the reset code with the test code.

It also interprets and executes any compilation

directives and processes the macro include files.

/sim/include/macro.inc This file contains the generic M4 macro definitions

and is the global macro library that contains macros

that can be used by all test cases. An example is

IPush() , which pushes a 32-bit integer value onto

the stack. This file provides a set of macros for

uniformity and a better understanding of the tests.

Macros improve readability and speed up test

development.

/sim/include/reset.code This file contains the skeleton of the reset code that

initializes the registers and starts the test, as well as

code that writes to the end location to end the test.

A marker in the reset code acts as the insertion point

for the user-defined test code. Default register

definitions at the top of reset code are based on the

values in the basic tests. This way, even if you do

not define your own register values, your test still

compiles.

/config/Makefile This makefile controls class file builds from the

.code , .java , or .jasm files. The source files

reside in the Makefile.in file in each directory. If

the test case is a .code file, it executes MakeTest to

build the class file; otherwise, it executes jasm or

javac for the build.

test_config.inc 1 This file lists the test-specific macros that add to or

override the macros in macro.inc . It should be in

each test directory where there are .code files.

Makefile.in 1 This file lists the files that make builds. It can

override the details in the generic makefile.
22 picoJava-II Verification Guide • March 1999

3.1.3 Compilation Directives

Verification engineers write tests in a variety of ways. Some use cpp ; others use m4,
shell, or Perl scripts; still others create C or C++ programs. To accommodate these

preferences, compilation directives are provided.

By embedding the following constructs in your test or macro files, you can control

the processing of your tests or macros and the compilation of your tests into a .jasm
file:

■ .compile_single command — Applies command to the current input file, but

not to other input files. Merging occurs after execution of this command on the

current input file.

■ .compile_single_2 command — Applies command, but not to the current input

file. This command can be useful for combining the result of an external event

with the input stream.

■ .compile_all command — Applies command to all the input files. This command

is executed after merging is complete.

■ .no_merge — Does not perform the merge phase.

■ .no_jasm — Does not compile to a .class file but leaves as a .jasm file when

compilation is complete.

■ .no_concat — Does not concatenate macro.inc , test_config.inc , and

the reset code. With this command, you must concatenate the files manually.

■ .no_global_compile — Does not execute any of the .compile_all
commands.

■ .inject_main [...] — Inserts the code inside the square brackets at the

beginning of the main method when a .push_injection occurs. Using multiple

.inject_main directives may cause errors.

■ .pull_injection — Extracts the code in the .inject_main directive from the

input stream.

■ .push_injection — Pushes the code that was previously extracted back into

the input stream at the beginning of the main method.

Note – All of the compilation directives must be the first characters of a line. You

can use as many directives as you desire; however, using multiple .inject_main
directives results in undefined behavior.

Currently, the .compile_all cpp -B -C -P and the .compile_all m4
command lines in macro.inc ensure that m4 filters all the files to pick up and use

the m4macros. Only compile_all causes all other files to recognize the macros that

are defined in any one file.
Chapter 3 Test Environment 23

You can add command-line arguments to the directives. For example, to run cpp
with the -B and -C options, include a .compile_single cpp -B -C or

.compile_all cpp -B -C line in your code.

The compiler executes commands in the following manner:

■ From top to bottom. Therefore, to pass your file through multiple filters, keep in

mind this order.

■ According to your current path. Thus, to run a version of m4 independent of your

current path setting, you must provide the full path name of that m4executable.

3.1.4 make Command

For RT tests, the make command performs the following steps:

1. Extract directives for and execute all .compile_single and
.compile_single_2 directives on the files: macro.inc , test_config.inc , and
reset.code , as well as on your test case (.code).

2. Concatenate the macro.inc , test_config.inc , and reset.code files (in that
order).

To skip this step, specify .no_concat .

3. Merge in your test case at the appropriate point in the reset code.

To skip this step, specify .no_merge .

4. Execute all .compile_all directives on the new file and create a .jasm file.

To skip this step, specify .no_global_compile .

5. Assemble the .jasm file and create a .class file.

To skip this step, specify .no_jasm .

3.2 RC Tests
RC tests have a main program. They use a standard reset code, which calls clinit
methods for all classes loaded, and then jumps to the first static method in any class

called main that has the signature main ()I . To write an RC test, you can write a

standard Java program (with the main method signature as described) and compile

it with a regular Java compiler such as javac .
24 picoJava-II Verification Guide • March 1999

3.2.1 Memory Map

Refer to FIGURE 2-1 on page 7 and TABLE 2-1 on page 8 for the memory map and

simulation flags used by the picoJava-II core verification environment.

3.2.2 Reset Process

The reset handler performs the following steps:

1. Load 0x003FFFFC to the VARSregister.

2. Load 0x003FFFFC to the SC_BOTTOMregister.

3. Load 0x003FFFFC to the OPTOPregister

4. Load 0x0 to the FRAMEregister.

5. Load 0x0 to the CONST_POOLregister.

6. Load 0x0 to the LOCKCOUNT0register.

7. Load 0x0 to the LOCKCOUNT1register.

8. Load 0x0 to the LOCKADDR0register.

9. Load 0x0 to the LOCKADDR1register.

10. Load 0x0 to the BRK1Aregister.

11. Load 0x0 to the BRK2Aregister.

12. Load 0x0 to the BRK12Cregister.

13. Load 0x0 to the GLOBAL0register.

14. Load 0x0 to the GLOBAL1register.

15. Load 0x0 to the GLOBAL2register.

16. Load 0x0 to the GLOBAL3register.

17. Load 0x00300000 to the OPLIM register.

18. Load 0x00010000 to the TRAPBASEregister.

19. Load 0xFFFF0000 to the USERRANGE1register.

20. Load 0xFFFF0000 to the USERRANGE2register.

21. Optional. Invalidate the instruction and data caches, using diagnostic writes.
Chapter 3 Test Environment 25

22. Set up the PSR, with optional watermarks if specified.

23. Initialize the heap structure.

24. Search for and invoke all clinit methods.

25. Search for the main method.

26. Turn on the performance monitor.

27. Invoke the main method.

28. Turn off the performance monitor.

29. Disable the NMI and IRL interrupts.

30. Optional. Flush the stack and data caches.

31. Check the return value from main and assign a pass or fail to the test.
26 picoJava-II Verification Guide • March 1999

CHAPTER 4

Test Scripts

This chapter describes the following test scripts:

■ The Standardized Test Executor and Monitor (Steam) script, which executes test

cases for the picoJava-II simulation environment

■ The gen_sst_control script, which parses log files from simulation runs

Steam runs an individual test case or a series of test cases in predetermined

behavioral environments. You can automate certain pretest, midtest, and posttest

functions, as well as control how test results are generated and displayed.

This chapter contains the following sections:

■ Steam Script Overview on page 27

■ gen_sst_control Script on page 50

4.1 Steam Script Overview
Steam is a perl script for running tests in the picoJava-II environment. Steam can run

tests in several modes: on the instruction simulator (ias) only; on the RTL model

only; or in cosimulation mode, where both ias and RTL run the same program in

lock-step, and the cosimulation environment compares the processor state between

ias and RTL after every instruction.

Steam provides a flexible environment for running tests and reporting results.

Individual tests can customize the environment and options used to run them, using

control files for each test suite. The control file for a test suite contains information

Steam needs to run the test suite, such as: the names of the tests in the suite, any

supporting classes that need to be loaded, cosimulation flags for a given test, and so

on. For more information about suite control files, see Suite Control File on page 33.
27

4.1.1 Syntax

The general syntax of the steam command is:

steam options tests

where options represents a list of control arguments, operands, and/or cosimulation

arguments; and tests represents a list of test names and/or directories containing

tests. You can specify test cases, directory names, and options in any order. Steam

executes tests according to their order (left to right) in the command line.

For a list of control arguments, see Section 4.2.3, Control Arguments, on page 36. For

a list of operands, see Section 4.2.4, Operands, on page 40. For a list of cosimulation

arguments, see Section 4.2.5, Cosimulation Arguments, on page 41.

Listing Steam Options

To see a list of options, enter the following command:

steam -help

4.1.2 Before Running Steam

Before using Steam to run tests, you need to :

■ Set environment variables

■ Check for syntax errors (optional)

■ Customize (optional)

Setting Environment Variables

Before using Steam, you need to set environment variables as follows:

setenv PICOJAVAHOME <directory where you untar’d the distribution>

setenv PROJECT picoJava-II

setenv DSVHOME $PICOJAVAHOME/$PROJECT/tools

setenv CLASSPATH ${DSVHOME}:.

setenv STEAM_PLUSARGS $PICOJAVAHOME/$PROJECT/sim/config

setenv VFILES_PATH $PICOJAVAHOME/$PROJECT/sim/env/vfiles

setenv VLOG_NAME pj2vlog

setenv VCS_NAME pj2vcs

setenv PATH $DSVHOME/bin:$PATH
28 picoJava-II Verification Guide • March 1999

For more information about environment variables used by Steam, see Section 4.2.9,

Environment Variables, on page 49.

Checking Syntax

Before executing any tests, check for syntax errors by running Steam using the -n
option. When you use the -n option, Steam reports any syntax problems but does

not run tests or change any files.

Customizing

Optionally, you may customize the simulation in one of the following ways:

■ Edit the following files:

■ pj2vlog program and steam.plusargs file

■ pj2vcs program and steam.plusargs file

■ Suite control file

or

■ Specify options at the command line to override the settings in the suite control

file

The control arguments, operands, cosimulation arguments, suite control file and

steam.plusargs file are described later in this chapter.

4.1.3 Steam Examples

This section provides the following examples:

■ Running a single test

■ Running ias only

■ Running a suite of tests

■ Using a non-default suite control file

Running a Single Test

To use Steam to run a single test, complete the following steps:

1. Change directory to the directory containing the suite control file.

For example:
Chapter 4 Test Scripts 29

cd $PICOJAVAHOME/$PROJECT/sim/test/pico_vts/basic_java

2. Run Steam.

For example:

steam allinst -flush -outdir test1dir

This example runs the test case allinst with the -flush cosimulation option and

places the results in the test1dir directory.

Running Tests on ias Only

By default, Steam runs tests in cosimulation mode. To use Steam to run tests on ias
only, use the -ias option as in the following example.

1. Change directory to the directory containing the suite control file.

For example:

cd $PICOJAVAHOME/$PROJECT/sim/test/pico_vts/basic_java

2. Run Steam.

For example:

steam allinst -ias -outdir test1dir

This example runs the test case allinst on ias only and places the results in the

test1dir directory.

Running a Suite of Tests

To use Steam to run a suite of tests, complete the following steps:

1. Change directory to the directory containing the suite control file.

For example:

cd $PICOJAVAHOME/$PROJECT/sim/test/pico_vts/basic_java

2. Run Steam.

For example:

steam . allinst -flush -outdir test1dir

This example runs all tests in the pico_vts/basic_java directory with the

-flush option and places the results in the test1dir directory.
30 picoJava-II Verification Guide • March 1999

Using a Non-Default Suite Control File

To use Steam to run tests using a non-default suite control file, complete the

following steps:

1. Copy and edit an existing suite control file.

2. Change directory to the directory containing the suite control file.

For example:

cd $PICOJAVAHOME/$PROJECT/sim/test/pico_vts/basic_java

3. Run Steam.

For example:

steam . -scf new.control -outdir test1dir

This example runs all tests in the pico_vts/basic_java directory using the

new.control suite control file. The results are placed in the test1dir directory.

4.2 Steam Operation
This section provides more detailed information about using the Steam script. It

contains the following sections:

■ Execution and Process on page 31

■ Suite Control File on page 33

■ Control Arguments on page 36

■ Operands on page 40

■ Cosimulation Arguments on page 41

■ Test Coverage and Statistics on page 43

■ Log Files on page 48

■ Timeout Control on page 48

■ Environment Variables on page 49

■ Exit Status on page 50

4.2.1 Execution and Process

Steam execution consists of three phases:

■ Pretest (the build-and-copy phase)

■ Midtest (the run phase)

■ Posttest (the check phase)
Chapter 4 Test Scripts 31

Note – To specify one or a combination of phases for Steam, use the following

options as appropriate: -build , -run , or -check_only .

Pretest (Build-and-Copy Phase)

Prior to executing tests, Steam sets up the conditions, as follows:

1. Parses the command line and prints errors or warnings, if any.

In case of errors, Steam halts.

2. Parses the suite control files and stores the information for execution.

In case of errors, Steam halts.

3. Copies the class files and any additional files for the test to the current directory
or the output directory if one is in the command line.

If it cannot find one or more files, Steam posts an error and halts.

4. Optional. Builds Verilog Chronologic Simulation (VCS) if that option is in the
command line.

5. Optional. Builds the test cases if the build options are in the command line.

If the build fails, Steam does not run those test cases.

6. Assembles the commands to run the tests.

7. Optional. Creates runme and .iasrc files if the relevant options are in the
command line.

Midtest (Run Phase)

Steam executes tests in the midtest phase, as follows:

1. Obtains the current timestamp.

2. If Steam has permission to utilize the Dynamic Resource Allocation Manager
(DReAM) environment, it submits the jobs.

While running in DReAM, if the -exit option is in the command line, Steam

terminates the script to allow the jobs it has submitted to continue their execution in

the background. Otherwise, it polls or executes all the jobs.

If Steam is not running in DReAM, it submits only the first job and obtains the

current timestamp. It repeats this step until it completes all the jobs.

3. Obtains the final timestamp.
32 picoJava-II Verification Guide • March 1999

Posttest (Check Phase)

After completion of all test cases, some postprocessing may be necessary. In the

posttest phase, Steam collates information according to the command line and

removes unnecessary or temporary information, as follows:

1. Streamlines the test directories according to the posttest control options in the
command line: -keepdirs , -nokeepdirs , or -keepfailures .

2. Collects statistics for the passes, failures, and abnormal terminations.

3. Creates and formats a summary report according to the command line.

In the absence of a summary string in the command line, Steam uses a default

format.

4. Creates three files: list.notrun , list.failure , and list.passfile , which
contain the test cases that were not run, failed, or passed, respectively.

4.2.2 Suite Control File

Each test suite must contain a suite control file, called suite.control , which

contains:

■ A list of all the subsuites — All the subdirectories, under the current directory,

which contain test cases

■ A list of all the test parameters that Steam applies to the test cases

■ A list of the immediate test cases under the current directory (not the test cases of

the subsuites)

■ The parameters and extraneous files that are required for the test cases

FIGURE 4-1 and FIGURE 4-2 illustrate two examples of a suite control file.

sample suite.control file for iu tests
suite
 tags |= listA listB
 subsuites = microcode hazard boundary fold
 subsuites = other_tests

FIGURE 4-1 An Example of a Suite Control File
Chapter 4 Test Scripts 33

The file shown in FIGURE 4-1 describes the test suites in the directed tests for the

Integer Unit (IU). It assigns all the tests in its hierarchy to be elements of the tags,

listA and listB , and enumerates the list of subsuite directories underneath the

current suite.

Note – Place only the word suite and the test case names in column 1 of the suite

control file. Indent all other lines with one or more white space characters.

The suite control file shown in FIGURE 4-2 contains the suite specification for the

sim/test/pico_vts/directed/iu/back2back directory. The suite-specific

items appear first, followed by the test cases.

The operator |= denotes that the current field is extended from its parents and

inherits attributes. The operator = denotes that no inheritance applies.

The variable $runtime expands to $DSVHOME/class . You can preserve the

subdirectory hierarchy when Steam copies files by enclosing in square brackets the

part of the hierarchy to be preserved. For example:

files |= $runtime|[java/lang]/foo.class

copies the file foo.class from $DSVHOME/class/java/lang to a subdirectory

java/lang from the current directory.

sample suite.control file for directed/iu/back2back
suite
 files |= class/$this.class
 tags |= back2back
 flags |= -rt
 imul_b2b
 store_load_b2b
 zero_line_b2b
 cache_flush_b2b
 cache_index_flush_b2b
 putstatic_quick_b2b
 flags = -rc -flush
 putstatic2_quick_b2b
 flags = -rc -flush
 getstatic_quick_b2b
 flags = -rc -flush
 getstatic2_quick_b2b
 flags = -rc -flush
 load_word_b2b

FIGURE 4-2 Another Example of a Suite Control File
34 picoJava-II Verification Guide • March 1999

Keywords

TABLE 4-1 lists and defines the suite control file keywords.

TABLE 4-1 Suite Control File Keywords

Keyword Definition

tags The set of tags to which the test suites or test cases are

bound, that is, how to configure the test lists for use by the

-setlist option.

subsuites The set of directories in the current directory that contain

additional tests. These directories must contain

suite.control files. Steam does not allow subsuite

inheritance via the |= operator.

flags The set of command-line options you should apply for a

default execution of the test case. You can add both test script

control arguments and cosimulation arguments.

files The list of files that this test requires. These files should be in

the current directory and form the complete list of files that

test execution needs. If a file contains the extension .class ,

Steam assumes it to be an additional class file for the test.

suite-prerun-command An optional command that you can run before executing the

test suite. You cannot apply subsuite inheritance (via the |=
operator) for this directive.

suite-postrun-command An optional command that you can run after executing the

test suite. You cannot apply subsuite inheritance (via the |=
operator) for this directive.

test-prerun-command An optional command that you can run before executing the

test case. You cannot apply subsuite inheritance (via the |=
operator) for this directive.

test-postrun-command An optional command that you can run after executing the

test case. You cannot apply subsuite inheritance (via the |=
operator) for this directive.
Chapter 4 Test Scripts 35

4.2.3 Control Arguments

TABLE 4-2 lists and defines the Steam control arguments that may be specified either

at the command line, or with the flags keyword in the suite control file.

TABLE 4-2 Control Arguments

Option Description

Test type

-rt Considers the test case independent reset code. You cannot

use it with -rc .

-rc Considers the test case a class file that requires external reset

code. You cannot use it with -rt .

DReAM control

-nodream Runs the test cases without dispatching jobs to DReAM. This

is the default. You cannot use this option with -dream .

-dream Runs the test cases by dispatching jobs to DReAM. You

cannot use it with -nodream .

Cosimulation control

-ias Runs test cases in IAS (pj_sim) standalone mode and hence

does not exercise the RTL model. You cannot be use this

option with -rtl or -cosim .

-pjsim Same as -ias .

-rtl Runs test cases in RTL only and exercises the Verilog model

directly. Does not run any tests with the instruction simulator

(IAS or pj_sim). You cannot use this option with -ias ,

-pjsim , or -cosim .

-cosim Runs test cases in the cosimulation environment, with IAS

(pj_sim) and RTL models executing simultaneously. This is

the default. You cannot use it simultaneously with -ias ,

-pjsim , or -rtl .

RTL model execution control

-vlog Runs test cases with Verilog XL instead of VCS. You cannot

use this option with -vcs . Steam ignores this option if you

specify -ias or -pjsim .

-vcs Runs test cases with VCS instead of Verilog XL. This is the

default. You cannot use it with -vlog . Steam ignores this

option if you specify -ias or -pjsim .
36 picoJava-II Verification Guide • March 1999

DReAM job watch control

-poll Checks job completion at regular intervals. Once the

command verifies that the jobs are complete, Steam displays

the results and then terminates. Steam ignores this option if

you do not run jobs in DReAM mode.

-exit Exits immediately after dispatching jobs. Steam ignores this

option if you do not run jobs in DReAM mode.

-wait Executes drmwait (1) to wait for all jobs to complete before

exiting. This is the default. Steam ignores it if you do not run

jobs in DReAM mode.

Suite control file usage

-scf filename Uses a suite control file (filename) to control the behavior of

running tests.

Configuration file

-config config_file Uses config_file as the configuration file for additional class

files to be loaded at runtime. See Operands on page 40 for the

function and behavior of config_file.

Test frequency control

-once Runs the test once only. You cannot be use this option with

-twice .

-twice Runs the test once. If it fails, runs the test again with the

TPL_DBGcosimulation option. Exits if the test passes. This is

the default. You cannot use this option with -once .

Second run

-dump_before num During the second run, generates the sst file num cycles

before the first error or mismatch occurs.

-dump_after num During the second run, generates the sst file num cycles after

the first error or mismatch occurs.

-no_second_sst Reruns the failed test but does not generate an sst file on the

second run.

Error control

-nommcnt Does not count the number of register and memory

mismatches between RTL and IAS (pjsim) during

simulation. This option serves as a summary option only.

Steam ignores this option if the cosimulation mode is not in

use.

TABLE 4-2 Control Arguments

Option Description
Chapter 4 Test Scripts 37

-noerrcnt Does not count the number of RTL monitor error messages

that Steam produces during test execution. This option serves

as a summary option only; Steam ignores it if you use -ias
or -pjsim .

Test result log

-logfilename log_name Assigns each test case the same log file name (log_name).The

default log file name is testcase.log , where testcase is the

name of the test up to the first + symbol in the name.

Pretest control

-build Builds the test cases before executing them by running make
in the test directories.

-buildvcs Builds a new version of VCS before executing tests. You can

still use this option even if you do not run the tests with VCS,

but it becomes moot in that case.

-build_only Builds the test cases but does not execute them.

-runme Generates runme files, which are short shell scripts that

contain the invocation to decafvcs or decafvlog . You can

run the runme scripts later for a quick reexecution of the test

case.

-no-rtime-classes Does not load Java runtime classes prior to executing the test

(for rc tests only).

Posttest control

-keepdirs Preserves the test case, log file, and any other test-specific

information in a run directory for each test case. This is the

default. You cannot use it with -nokeepdirs or

-keepfailures .

-nokeepdirs Does not preserve run directories; instead, this option copies

the log files back to the current directory upon completing

the test, then removes the run directories. You cannot run this

option with -keepdirs or -keepfailures or when you

run multiple tests with -logfilename or TPL_DBG.

-keepfailures Preserves run directories for only the test cases that are

failing. If the test passes, this option copies the log file back to

the current directory. You cannot use it with -keepdirs or

-nokeepdirs .

-merge_monitor_coverage Browses the test log files for lines that begin with COVERAGE
and merges the results. See Merging of Statistical Results on

page 44 for more information.

TABLE 4-2 Control Arguments

Option Description
38 picoJava-II Verification Guide • March 1999

-no_merge_rtl_stats Browses the test log files for lines that begin with RTL
-STAT and merges the results. See Merging of Statistical
Results on page 44 for more information.

Summary reporting of test results

-summary Produces a summary of the runs upon completion of test

cases. You cannot use it with -nosummary .

-nosummary Does not produce a final summary report. You cannot use it

with -summary .

-format_string string Customizes the summary report by printing it in the string
format. See Customization of the Summary Report on page 45

for more information.

Timeout control

-timeout time_limit Aborts the test run if the total elapsed time exceeds time_limit.
See Operands on page 40 for the format of time_limit.

Selective test execution control

-setlist set Runs only tests that fall within set. See Operands on page 40

for a description of this option and its format.

Debugging

-debug0 Prints some debugging messages while Steam is running.

-debug1 Prints verbose debugging messages while Steam is running.

-debug2 Prints temporary debugging messages.

Miscellaneous

-jobc constraint_file Submits DReAM jobs with constraint_file. See Operands on

page 40 for a description of the behavior of this option.

-jobh dir_name Submits DReAM jobs with path, which is the directory name

for constraint files. The default is sim/env .

-n Parses the command line for correct syntax and reports any

errors, discrepancies, or missing files. This option does not

run tests or change files.

-M mailing_list Emails the addressees (mailing_list) on completion of the test.

If Steam generates a summary report, it becomes part of the

email.

-outdir dir_name Writes all output files to dir_name and collects the test cases,

log files, and other data from a point rooted at the current

directory.

TABLE 4-2 Control Arguments

Option Description
Chapter 4 Test Scripts 39

4.2.4 Operands

TABLE 4-3 lists and defines the Steam operands that may be given at the command

line.

-q Runs in quiet mode and does not generate output messages,

except for the summary report. To not produce this report,

add the -nosummary option.

-gate Uses the gate-level simulation paradigm instead of the RTL

simulation paradigm.

-vcov Generates VeriCov coverage results for the test cases as they

are run.

-help Displays information on how to use Steam.

-h Same as -help .

TABLE 4-3 Operands

Option Description

config_file A file that lists the classes Steam loads, one class per line, each preceded by

a + symbol and without the .class extension. For an example, see

sim/test/pico_vts/directed/iu/microcode/test_config.txt .

log_name The name of the file that Steam generates as the output of a cosimulation,

RTL-standalone, or IAS-standalone run. Steam produces one such log file

for each test case that it executes.

format_string The string that describes how to print and align the rows and columns of

the output summary report. The syntax and implementation of

format_string are as yet not determined.

time_limit A string of the format h:mm or hh:mm, which indicates in hours and

minutes the maximum permissible time for test execution. The time limit

begins when execution or job dispatch starts. If the time limit is exceeded,

Steam terminates the tests and posts a notice in the summary.

set Any combination of the set names that are available for one or more test

cases. Steam determines the set names by parsing the test suite control file

and allows any legal combination of the sets. set operators include: +
(union), * (intersection), ! (complement), and - (difference), which have

standard meanings from the set theory.

TABLE 4-2 Control Arguments

Option Description
40 picoJava-II Verification Guide • March 1999

4.2.5 Cosimulation Arguments

Steam can be given arguments to use in running a simulation. In cosimulation or

RTL mode, these options are passed along to the pj2vlog or pj2vcs command. All

these options must be defined in the steam.plusargs file described in the

following section. If they are not present in the steam.plusargs file, they are

ignored.

Cosimulation arguments may be specified at the command line, or in a suite control

file with the flags keyword.

All cosimulation arguments have an equal and opposite argument: no_option. You

can use the opposite arguments at the command line to override the behavior that

the suite control files specify.

Because suite control files may employ inheritance, it is a good practice to check for

inherited options and/or negate any unwanted arguments by specifying -no_ option
at the command line.

steam.plusargs File

The steam.plusargs file determines which cosimulation arguments Steam

recognizes. It contains the list of all valid arguments. Arguments that are not in this

file are ignored.

mailing_list The list of email addresses or aliases to which to send the test run results.

To list multiple names or aliases, enclose the entire list in quotation marks

so that the shell does not consider each name as a separate argument to the

script.

dir_name The name of a directory, which can be either relative or absolute.

num Any nonnegative integer.

string Any string that is enclosed in either single or double quotation marks on

the command line.

constraint_file Any text file that DReAM can interpret as a constraint file. This is the name

of a file, not a path.

filename The name of a text file, not a path.

TABLE 4-3 Operands

Option Description
Chapter 4 Test Scripts 41

TABLE 4-4 lists the arguments in the default steam.plusargs file.

TABLE 4-4 Arguments in the Default steam.plusargs file

Option Description

-boot8 Enables the 8-bit boot mode.

-nofpu Runs without the Floating Point Unit (FPU).

-nosmu Runs without the Stack Manager Unit (SMU).

-flush Flushes the stack and data caches after completing the test.

-expcount Causes the exception handlers to increment a counter and return

instead of aborting the test.

-cacheinvalidate Invalidates all cache entries at the beginning of the test.

-handle Runs the test with enabled handles. For details, see the picoJava-II
Microarchitecture Guide.

-minwm Runs with dribbler watermark settings at 8 and 16, the smallest legal

values.

-maxwm Runs with dribbler watermark settings at 48 and 56, the largest legal

values.

-pj_halt Forces the pj_halt signal to high for the duration of the test.

-sst_control Creates a signalscan dump file for a set of clock-cycle ranges.

Before you use this argument, create a file named sst_control in

the current directory that contains clock-cycle values in hexadecimal,

one value per line.

-single_step Tests instruction single stepping, that is, disables the clock for 100

cycles.

-fldg_mon Enables the instruction folding monitor.

-int_random Enables random interrupts (nmi , irl1 ,...,irl15) and schedules them

at random intervals.

-int_cntl Enables a preset pattern of interrupts to test interrupt nesting and

priority.

-rand_ack1 ,

-rand_ack2
Uses a seed when initializing the random memory control

acknowledgment logic.

-s1 , -s2 , -s3 , -s4 ,

-s5 , -s6
Sets one of six random seeds to be used by the random memory

control generator.

-hold_seed_2 ,

-hold_seed_3
Sets one of two random seeds to initialize the random SMU hold

generator.

-no_ucode_mon Disables the microcode monitor.

-ibuf_mon Enables the instruction buffer monitor.
42 picoJava-II Verification Guide • March 1999

Customized steam.plusargs File

If you customize the simulation, you need to add the new option definitions to the

steam.plusargs file in addition to modifying the pj2vcs or pj2vlog program.

The default is located in sim/config/steam.plusargs .

To add arguments to the steam.plusargs file, list one argument per line and

include the following information for each argument:

■ The name of the argument

■ The name of the project that uses the argument

■ A description of the argument

Separate the information with colons. For example:

-fldg_mon:decaf:enable the instruction folding monitor .

To direct Steam to use a file other than the default, use the environment variable

$STEAM_PLUSARGS. If the file specified by $STEAM_PLUSARGSdoes not exist,

Steam prints a warning message and uses the default file. If Steam cannot locate the

default file, it prints an error message and terminates the script.

4.2.6 Test Coverage and Statistics

This section describes the Steam processes that generate coverage and statistical

results from test runs.

Merging of Coverage Results

Steam can merge the coverage results that are generated through multiple test cases.

-powerdown Enables random powerdown (irl_15).

-int_cmd Enables interrupts at times in the int_cmd_file file.

-record Records the pin assertions and dumps them to pico_p {in ,

out }.tape .

-statistics Keeps statistics on the stack size and timing paths.

-smu_hold Enables the random SMU hold signal in the full-chip level.

-dcu_debug Enables the DCU debug monitor, which prints out all memory

accesses.

TABLE 4-4 Arguments in the Default steam.plusargs file (Continued)

Option Description
Chapter 4 Test Scripts 43

A COVERAGEline, displayed by a Verilog monitor, contains a string of 1s and 0s,

which Steam can interpret. For example:

■ The keyword COVERAGE:at the beginning of a line shows Steam that it is a valid

coverage statistic.

■ The token ibuffer describes the type of coverage and can be any string that

does not contain white space.

■ The string of 1s and 0s is a predetermined set of events for which the monitor is

verifying coverage.

For each event monitored:

■ 1 indicates that the item was covered in the test.

■ 0 indicates that the item was not covered in the test.

To merge coverage results:

● Add the -merge_monitor_coverage option to the command line.

Steam then performs the following steps:

1. Browses the log files of the tests that were run and grabs the lines that begin with
COVERAGE:.

2. Uses the bitwise logical or command to add together the numerical strings in the
COVERAGElines of a statistical token (such as ibuffer) to produce the total
coverage for that token.

3. Logs the totals in the steam.log file.

Merging of Statistical Results

To be recognized by Steam, a statistical result must contain the following:

■ The keyword RTL-STAT: at the beginning of a line

■ A statistical token (such as CLOCK_CYCLES) that does not contain white space

■ An unsigned decimal number that follows the token

An RTL-STAT line is displayed by a Verilog monitor, usually at the end of

simulation. Unlike the COVERAGEline, it contains numerical information about a

specific event instead of a binary string, which may indicate coverage of multiple

events. For example:

COVERAGE: ibuffer 001011101100

RTL-STAT: CLOCK_CYCLES 73456
44 picoJava-II Verification Guide • March 1999

Steam merges statistical results by default, as follows:

1. Browses the log files of the tests that were run and grabs the lines that begin with
RTL-STAT: .

2. Adds together the numerical values in the lines that contain statistical tokens
(such as CLOCK_CYCLES) to produce the sum for the tokens.

3. Logs the totals in the steam.log file.

To disable merging of statistical results:

● Add the -no_merge_rtl_stats option to the command line.

Customization of the Summary Report

By default, Steam displays a summary report after all the tests are complete.

Summary Report Format

The summary report contains basic information about the terminal disposition of

test cases in three sections:

■ The top section — A title and pre-report information that you specify

■ The middle section — Specifics that pertain to the test cases, including the case

names, whether the tests passed, failed, or did not run, and the number of

instructions and clock cycles in the test cases

■ The bottom section — Total statistics

Customization Process

You can customize the report format. Steam utilizes the string format_string to

dictate the format of the report.

To define format_string , do one of the following:

● Set the environment variable FORMAT_STRING.

or

● Use the -format_string command-line option.

Note – In either case, be sure to enclose the format string in single or double quotes

so as not to confuse the shell.
Chapter 4 Test Scripts 45

format_string , just a string itself, must contain formatting information for all

three sections of the report. You insert two instances of a separator marker // : one to

divide the top section from the middle section, the other to divide the middle section

from the bottom section.

Steam posts an error if format_string does not contain these divisions.

format_string can contain any ASCII character. Steam interprets it literally, with

several exceptions, to allow the placement of statistical information into the report.

In following much the same theory as the printf command in C/C++, you can

insert special character sequences into the string; the report formatter then

substitutes them with special pieces of information. TABLE 4-5 summarizes these

special characters.

TABLE 4-5 Special Characters for format_string

Character Description
Recommended
Section of Report

%c The clock cycle count for the current test case Middle

%i The instruction count for the current test case Middle

%f The number of instructions that have been folded away for the

current test case

Middle

%q Elapsed (wall clock) time to execute the test case Middle

%r Test result: passed , failed , or not run Middle

%m The number of cosimulation mismatches in the current test case Middle

%e The number of error messages for the current test case Middle

%l The timeout limit assigned to the current test case Middle

%w The whole name of the test case, which contains a relative or

absolute path to it

Middle

%y The amount of CPU time it took to run the current test case Middle

%t The name of the test case (excluding the path to it) Middle

%u The directory in which the test case was run Middle

%P The total number of test cases that passed Bottom

%F The total number of test cases that failed Bottom

%N The total number of test cases that were not run Bottom

%C The total number of clock cycles for all tests Bottom

%I The total number of instructions that were executed for all tests Bottom

%X The total number of instructions that were folded away for all

tests

Bottom
46 picoJava-II Verification Guide • March 1999

Note – You can use items that are recommended for the top or bottom section of the

report in any section with valid results. However, If you use the items for the middle

section of the report in the top or bottom section, Steam produces unknown values

for them.

We suggest that you format your reports to make them intuitive, such as by frequent

inserts of newline characters to space out information, such as the default format

string that Steam uses in the following example. Remember that format_string is

a single line of text; because of line-feed constraints, we cannot present it as such in

this example.

%Y The total CPU time for all tests Bottom

%O The top-level directory from which all the run directories are

rooted

Top or bottom

%T The total number of tests Bottom

%% The percent (%) character Any

\n The newline character Any

Test Summary Report:\n\n//%w %r (err=%e, mm=%m) -- cyc: %c, inst:
%i, fold: %f\n//\n Total cycles: %C\nTotal instructions: %I\nTotal
instructions folded away: %X\nTotal tests passed: %P\n Total tests
failed: %F\nTotal tests not run: %N\nTotal tests: %T\nTotal cpu
time: %Y
seconds\n

TABLE 4-5 Special Characters for format_string (Continued)

Character Description
Recommended
Section of Report
Chapter 4 Test Scripts 47

Here is a sample report that the above string produces:

4.2.7 Log Files

Check the steam.log and outdir/test.log files for details about the test activity.

4.2.8 Timeout Control

At times, it is convenient to limit the amount of runtime for a test case.

You can use the -timeout option in Steam, either inside the suite control file or in

the command line, to specify the maximum length of time for which to run a test. If

the test is run in DReAM, this time limit includes both the time in the queue and that

for running the test.

The -timeout option takes an argument of the form hh:mm (or h:mm) to indicate

the maximum amount of time (in hours and minutes) for running the test case.

If a time limit is exceeded, Steam does the following:

■ Terminates the test that is running or waiting to be run (if it is in the DReAM

queue)

■ Posts a notice in the summary report that the test timed out and was therefore

terminated

■ Assigns not run as the result for the test

Test Summary Report:

./test1 passed (err=0, mm=0) -- cyc: 632, inst: 142, fold: 20

./test2 not run (err=0, mm=0) -- cyc: 0, inst: 0, fold: 0

./test3 failed (err=1, mm=5) -- cyc: 512, inst: 123, fold: 18

Total cycles: 1144
Total instructions: 265
Total instructions folded away: 38
Total tests passed: 1
Total tests failed: 1
Total tests not run: 1
Total tests: 3
Total cpu time: 8.24 seconds
48 picoJava-II Verification Guide • March 1999

Always use -timeout in conjunction with -poll . Due to the nature of timeouts, the

script must poll for the completion of the test and check it against the current

amount of elapsed time. In case of a drmwait command, no checking can occur

since drmwait returns only when all jobs have completed.

4.2.9 Environment Variables

The test execution script uses the environment variables in TABLE 4-6. The script may

terminate in error if some of these variables are not set or are set incorrectly.

Note – You can override some of these environment variables with corresponding

command-line options.

TABLE 4-6 Environment Variables in the Test Execution Script

Environment Variable Description

HOME Your home directory

FORMAT_STRING The default string for report formatting. To override this default,

specify the string on the command line.

TIME_LIMIT The default time limit for test execution. If it is not set, Steam

assumes that all tests can run for an unlimited time. To override

this default, specify the time limit on the command line.

PATH The name of the default directory for your UNIX commands,

DReAM commands, and Perl scripts

DSVHOME The default path of runtime classes and other class files that are

not in the test directories

CDMS_LOCALDIR The location of the local copy of the CDMS tree for the current

project

PROJECT The name of the current project

VCS_NAME The name of the VCS executable. The default is pj2vcs .

VLOG_NAME The name of the verilog-XL executable. The default is

pj2vlog .

IAS_NAME The name of the instruction simulator. The default is ias .

STEAM_PLUSARGS The name of the directory that contains the steam_plusargs
file

VFILES_PATH The location of the vfiles file that verilog-XL uses
Chapter 4 Test Scripts 49

4.2.10 Exit Status

TABLE 4-7 defines the three types of exit status for Steam.

4.3 gen_sst_control Script
The gen_sst_control script does the following:

JOBFILE_HOME The path to the directory that contains the DReAM job

constraint files. The -jobh option overrides this environment

variable.

JOBFILE_CONSTRAINT The name of the job constraint file. The -jobc option overrides

this environment variable.

VCOV_DIR The directory for pj2Vcov.cov , pj2Vcov.db , mayaVcov.inv ,

and cf.run . If $PROJECThas a different setting, these file

names reflect that change.

VCS_GATE_NAME The name of the VCS executable, which can be used for running

a gate-level simulation

VCS_VCOV_NAME The name of the VCS executable, which can be used for

generating VeriCov coverage results

MAKEFILE_LOC The path to the Makefile, which can be used to build tests

MAKEFILE_NAME The name of the Makefile, which can be used to build tests

PWD The current working directory

SHELL The shell in which to run Steam

TABLE 4-7 Exit Status Types for the Test Execution Script

Status Description

0 The script ran and terminated normally.

1 A command-line parser error occurred. Steam writes error and warning messages

to stderr .

255 The script terminated due to a problem during environment setup, such as the

case where Steam cannot locate a file.

TABLE 4-6 Environment Variables in the Test Execution Script (Continued)

Environment Variable Description
50 picoJava-II Verification Guide • March 1999

■ Parses a log file from a simulation run

■ Determines the clock cycles at which failures occur

■ Generates a sst_control file, so that SignalScan can in turn create a trace file

around the points of failure

If the log file does not contain any errors or mismatches, gen_sst_control creates

an empty sst_control file.

4.3.1 sst_control File

At the beginning of simulation, the test bench reads the sst_control file to

determine the clock cycle at which to start and stop the logging of signals. Because

signal logging is time consuming, it is desirable to log information only during the

pertinent time of a previously known failure point, not during the entire simulation.

In the current test environment, you must specify +sst_control and TPL_DBGfor

the logging to take effect according to the numbers in the sst_control file.

Since Verilog can read hexadecimal values, gen_sst_control calculates which

clock cycle to start and stop the dumping, converts the result to hexadecimal, and

prints the values into the sst_control file. Each line in that file contains a pair of

hexadecimal numbers that indicate the clock cycle to start and stop the dump,

respectively.

4.3.2 Syntax and Options

The syntax is:

gen_sst_control options logfile

TABLE 4-8 summarizes the command-line options.

TABLE 4-8 gen_sst_control Command Line Options

Option Description Default

-error Checks for error messages only False

-mismatch Checks for mismatches only False

-before num Begins dump num cycles before the point of failure 100

-after num Begins dump num cycles after the point of failure 100

-all Dumps for all errors and mismatches, not just the first one False
Chapter 4 Test Scripts 51

By default, gen_sst_control determines the points of failure by looking for both
the error and mismatch messages. To direct gen_sst_control :

■ To look for error messages only, use the -error option

■ To look for mismatch messages only, use the -mismatch option

Also, since most debuggers work with only the first point of failure of a test case,

gen_sst_control generates only the information for the first error or mismatch by

default. Using the -all option generates an sst_control file that contains logging

information for all points of failure.

The -before and -after options specify how much time before and after the point

of failure to dump information. Although the default value is 100 clock cycles for

both options, you may want to increase this number in certain circumstances,

especially before the point of failure.

Often, the real point of failure occurs long before it is flagged as an error or

mismatch. Conversely, we recommend that you be conservative with the dump size,

not just for efficiency in generating the dump, but also because the maximum size of

the TPL.sst file is 50 Mbytes only. The earlier information in dumps that require

more space is truncated.
52 picoJava-II Verification Guide • March 1999

CHAPTER 5

External Tools

This chapter describes the use of the following verification tools that are developed

outside of Sun:

■ Radify (from Synopsys) — For optimizing Verilog designs (see the next section)

■ VeriCov (from Summit Design) — For measuring test coverage of the module and

expressions (see page 54)

These tools are optional. For information about Radify, go to www.synopsys.com .

For information about VeriCov, go to www.summit-design.com .

5.1 Radify
Radify optimizes Verilog designs for runtime simulation. It performs semantically

preserved transformations on the original design in the source and writes out the

Verilog code for the modified design to a file. The transformations ensure that the

modified design runs faster and is more compact.

You can use some Verilog-XL arguments to start Radify. Radify ignores

+ arguments that it does not recognize.

▼ To Run Radify

Type at the system prompt:

% radify -f vfiles

where vfiles is a list of Verilog files. The default output file is rad.v .
53

▼ To Run Simulation with VCS

● Build a vcs executable with rad.v (instead of the Verilog source).

Here is a sample VCS build script for the picoJava-II core:

▼ To Run Simulation with Verilog-XL

● Provide rad.v to Verilog as input (instead of the Verilog source). For example,
type the following command:

% pj2vlog rad.v +cosim+ias

5.2 VeriCov
VeriCov measures the quality of simulation tests that are applied to a Verilog design

and provides a quantitative measure of how well simulation test benches exercise

the design.

To run the process, VeriCov uses VCS (Chronologic) or Verilog-XL (Cadence)

simulators.

5.2.1 Key Features

VeriCov generates the following coverage results:

■ Coverage for blocks — Provides measurement for blocks in the design. Blocks are

sequences of procedural statements between begin -end pairs that contain a

blocking statement, including if -else , for , repeat , and case statements.

■ Coverage for paths — Provides measurement for the complete set of procedural

paths that exists within each initial and always block and within the forever ,

while , repeat , and for loop statements.

#!/bin/csh -f

setenv DSVHOME /home/picoJava-II/tools
vcs -Mupdate=1 rad.v -P /home/picoJava-II/sim/env/vcs.tab \
 -o pj2vcs $DSVHOME/lib/libloader.a $DSVHOME/lib/libtamv.a \
 -lXt -lX11
54 picoJava-II Verification Guide • March 1999

■ Coverage for expressions — Provides measurement for logical primitives,

behavioral expressions, and continuous assignments, including first-level

expression term coverage for not , and , or , xor , and xnor logical operations.

5.2.2 Build Script

The following script builds pj2vcs with VeriCov.

Also, this build script creates two other files, pj2Vcov.db and pj2Vcov.cov , which

are used to generate coverage data during simulation.

5.2.3 Simulation

To perform a simulation task:

1. Set the environment variable, as follows:

% setenv VCOV_DUMP $testname.cov

2. Set up links in the test directories:

a. Link to pj2Vcov.db , the design database.

b. Link to pj2Vcov.cov , the coverage file.

#!/bin/csh -f

setenv VERICOVHOME /home/vericov/vericov,v1.2.2/5.x
setenv DSVHOME /home/picoJava-II/tools

echo "compile -f /home/picoJava-II/sim/env/vfiles" > vcovCompile.in
echo "new db pj2Vcov.db" >> vcovCompile.in
echo "libselon" >> vcovCompile.in
echo "new cov_table" >> vcovCompile.in
echo "modcovon -bpen *" >> vcovCompile.in
echo "save instru_code pj2Vcov.inv" >> vcovCompile.in
echo "save cov_table pj2Vcov.cov" >> vcovCompile.in
echo "quit" >> vcovCompile.in

vcov +vcov+config+vcovCompile.in | tee vcovCompile.log
vcs pj2Vcov.inv -Mupdate=1 -P $VERICOVHOME/pli/vcs2_2/vcovpli.tab \
-P /home/picoJava-II/sim/env/vcs.tab -o pj2vcs -Mdir=csrc.vcov \
$VERICOVHOME/pli/vcovpli.o $VERICOVHOME/lib/libtcl.a \
$DSVHOME/lib/libloader.a $DSVHOME/lib/libtamv.a -lXt -lX11
Chapter 5 External Tools 55

c. Link to a vericov command file.

Here is the command file (cf.run) for the picoJava-II core:

3. Execute the task with the following command:
% pj2vcs.vcov +vcov+config+cf.run

5.2.4 Coverage Report

To generate a coverage report:

1. Create a cf.merge file to indicate to vcovrpt which database to load and which
coverage files to merge.

Here is a sample cf.merge file:

vcovrpt then generates the coverage data.

2. Create a coverage report with the following command:
% vcovrpt +vcov+config+cf.merge

The report contains a summary and details of the instance blocks, paths, and

expressions.

Note – If the design contains muxes with default statements that are never

executed, the coverage number from vericov is lower than the actual coverage.

When reading the coverage report, therefore, be sure to determine if a lower

coverage number is caused by insufficient tests or by these extraneous statements.

load db pj2Vcov.db
load cov_table pj2Vcov.cov
save cov_table $env(VCOV_DUMP)

load db pj2Vcov.db
load cov_table \
basic/arithm_int.cov \
basic/arithm_long.cov \
basic/locvar_float.cov
union merge.cov
rptgen
56 picoJava-II Verification Guide • March 1999

5.2.5 Coverage Numbers

This section gives the coverage numbers obtained by running the full test suite.

TABLE 5-1 shows the CPU coverage numbers.

TABLE 5-2 shows the block coverage for each unit of the core.

TABLE 5-1 CPU Test Coverage

Coverage Type Coverage (%)

Block 93

Path 91

Expression 85

TABLE 5-2 Block Coverage for Core Units

Unit Sub-Unit Block Coverage (%)

IU 93

ex 92

ucode 93

IFU 94

RCU 95

pipe 99

DCU 96

ICU 91

FPU 91

SMU 93

PCSU 100
Chapter 5 External Tools 57

58 picoJava-II Verification Guide • March 1999

CHAPTER 6

Monitors

This chapter describes the monitors the picoJava-II verification team uses to observe

and sample signals in the CPU core. After an general description of monitors—

■ Overview on page 59

—the chapter discusses the following monitors:

■ I-Buffer Monitor on page 60

■ SMU Monitor on page 60

■ FPU Monitor on page 61

■ Powerdown Monitor on page 61

■ Microcode Monitor on page 62

■ Folding Monitor on page 63

This chapter also explains in the following sections how interrupt events are

scheduled, how the pipeline is frozen, and how statistics for reports are generated.

■ External Interrupt Controller on page 64

■ Random SMU Hold Generator on page 66

■ Statistics Monitor on page 67

6.1 Overview
Monitor functions are cycle-accurate and complement cosimulation testing, which is

only instruction-accurate. Some monitors not only sample signal transactions but

also generate events from outside the core, such as interrupts and powerdowns.

Monitors report error conditions by displaying to standard output:

ERROR:

which indicates to the test run script that the test has failed.
59

For details and source code, see the .v and .h files in sim/env . Instantiations of the

monitors are in the monitor module in the monitor.v file.

6.2 I-Buffer Monitor
The monitor for the I-Buffer, called the ibuf_monitor module, checks the

valid <15:0> signal (valid byte) in the I-Buffer control, iu_shift_d <7:0> (number

of read bytes), and ic_fill_sel <15:0> events. It performs the following tasks:

■ Monitors the I-Buffer state for each cycle

■ Sets a flag for each I-Buffer state or pattern

■ Checks the coverage

■ Posts an error for any pattern that does not match a particular group of patterns

and stops the simulation

If the monitor detects a pattern that combines one or more zeroes, then the design

team must create a test to reproduce that pattern to ensure complete coverage of the

verification for the I-Buffer states.

This monitor operates as follows:

■ If the I-Buffer produces a pattern that does not fall under the group, the I-Buffer

monitor stops the simulation. A debug process must follow.

■ The I-Buffer monitor does not test the boot mode.

6.3 SMU Monitor
Always enabled, the monitor for the SMU operates at the rising edge of each clock

cycle.

The SMU monitor posts an error message if:

■ The SMU asserts:

■ A fill signal when there are more valid entries than the low watermark in the

stack cache

■ A spill signal when there are less valid entries than the high watermark in the

stack cache

■ There are more than 60 entries in the stack cache and the SMU has not asserted an

overflow.
60 picoJava-II Verification Guide • March 1999

■ No stall occurs in the IU pipeline when there are less than six valid entries in the

stack cache.

■ The SMU writes an undefined value in the stack cache.

■ The DCU writes an undefined value in the stack cache.

■ The SMU writes an undefined value in the data cache.

■ The SMU asserts a spill signal and a fill signal at the same time.

■ The SMU and the IU are writing to the same address at the same time.

6.4 FPU Monitor
The monitor for the FPU checks for protocol violations at the IU-FPU interface and

samples some critical signals for the purpose of debugging.

The violations include:

■ An unexpected assertion or deassertion of signals on the IU-FPU interface

■ Signals that go to Xs (invalid conditions)

■ An undue length of an FPU operation

The FPU monitor samples and displays:

■ Valid FPU opcode

■ Valid FPU input and output

6.5 Powerdown Monitor
The powerdown monitor interfaces with the PCSU. It performs the following tasks:

■ Tests powerdown features

■ Records powerdown cycles and acts as a low-power performance meter

The powerdown monitor operates as follows:

■ After the PCSU has asserted the pcsu_powerdown signal,

POWERDOWN_WAIT_NUMBERbecomes the upper limit for the wait cycles. If a

function unit cannot enter the powerdown state upon reaching this limit, the

powerdown monitor posts a warning message to indicate which unit it is.

■ At the end of simulation, the powerdown monitor displays:

■ The total of standby cycles

■ The ratio of the number of standby cycles to the total of system cycles
Chapter 6 Monitors 61

6.6 Microcode Monitor
The microcode monitor, enabled by default, tests several conditions on the interface

between the IU and the microcode.

To disable this monitor:

● Add +no_ucode_mon to the command line.

The rules for this interface are based on the IU-microcode interface (see the picoJava-
II Microarchitecture Guide), as follows:

■ Microcode cannot read and write at the same stack cache address simultaneously.

■ A microcode special request, made by the IU, contains the data from the data

cache that the IU writes to the stack cache. If the IU makes such a request, the

microcode register u_f03 must indicate a data cache read.

■ In a read or write request from the IU to the stack cache or data cache, if one of

the following four exceptions occurs—

■ runtime_IndexOutOfBoundsException
■ runtime_NullPtrException
■ gc_notify
■ ClasscastException

—then the states in the registers, the stack cache, and the data cache do not
change; also, the u_done signal goes high.

■ The picoJava-II core throws no exceptions in a microcode stall, that is, when

ie_stall_ucode is high.

■ Microcode asserts the u_done signal during the last microcode cycle.

■ Microcode cannot update the OPTOPand VARSregisters in the last cycle of its

operation.

■ iu_trap_r and ifu_op_valid_r are not active at the same time.

■ If the VARS, FRAME, or cp registers have changed, microcode cannot make any

more data cache read requests.

Any time any of the above rules are not met, the microcode monitor posts an error

message.
62 picoJava-II Verification Guide • March 1999

6.7 Folding Monitor
The folding monitor checks the combinations of folding instructions by probing

signals from the folding logic and I-Buffer logic to determine whether foldings are

correct.

In cases where folding does not occur, the folding monitor keeps track of the causes

in a performance counter. The causes are:

■ The psr.fle signal is off, that is, folding is disabled.

■ The I-Buffer is dirty.

■ A stack cache miss has occurred.

■ Traps or branches have occurred.

■ Decoding is not valid; that is, the I-Buffer contains incomplete instructions.

The folding monitor performs the following tasks:

■ Decode instructions from the I-Buffer and perform folding.

■ Compare the output from the folding logic against that from the folding monitor.

Following are the nine valid folding combinations from the folding logic:

■ Turn on debug mode and post error messages if the folding logic output shows

incorrect folding combinations or combinations that differ from those in the

folding monitor. The error messages are:

IB contents and dirty bits.

Actual folding logic output.

All inputs which can alter the result of the folding logic
output at the unit boundaries.

■ Collect performance statistics on why folding does not occur.

LV LV OP MEM LV OP MEM LV OP

LV LV OP LV BG2 LV MEM

LV LV BG2 LV BG1 OP MEM
Chapter 6 Monitors 63

Here is a sample of the output from the folding monitor at the end of a test:

6.8 External Interrupt Controller
The external interrupt controller is inside the powerdown monitor module and

shares the pj_nmi and pj_irl signals. It performs the following tasks:

■ Schedules pj_nmi and pj_irl events

■ Tests interrupt features

■ Uses pj_irl [15] as a powerdown interrupt

The command line takes the arguments listed in TABLE 6-1.

Folding_statistics_begin

Folded Missed
psr.fle
Disable

IB
Dirty

Stack
Missed

Traps/
Branches

Decode
!valid

LV LV OP MEM 0 0 0 0 0 0 0

LV LV OP 2 0 0 0 0 0 0

LV LV BG2 0 0 0 0 0 0 0

LV OP MEM 0 0 0 0 0 0 0

LV BG2 0 1 1 0 0 0 0

LV BG1 2 12 11 0 0 0 1

LV OP 1 3 2 0 0 0 1

LV MEM 0 2 2 0 0 0 0

OP MEM 0 0 0 0 0 0 0

Folding_statistics_end

TABLE 6-1 External Interrupt Controller Arguments

Argument Default

+int_random pj_nmi and pj_irl [3:0] are low.

+int_cntl The interrupt controller is off.

+int_cmd The interrupt commands are off.

+powerdown Does not generate pj_irl [15].
64 picoJava-II Verification Guide • March 1999

The interrupt protocol uses the following memory locations:

■ PENDING_REGISTER, mapped to 30'h0000fff8

■ STOP_RANDOM_INTERRUPT, mapped to 30'h0000fff4

Here is the recommended coding sequence for the interrupt handler:

The external interrupt controller operates as follows:

■ If +int_random is in the command line for simulation, the external interrupt

controller asserts pj_nmi and pj_irl randomly. These signals remain active

until the test software executes ncwrite_word to PENDING_REGISTER.

The handler performs ncwrite prior to turning on PSR.IE . In some cases,

however, ncwrite occurs so late on the bus that the IE is on and the RTL receives

another interrupt, but the ias sees only one interrupt. Thus, ncload_word must

follow ncwrite_word to enforce the ordering and ensure that PSR.IE is on only

after ncwrite .

The external interrupt controller continues to assert interrupts at random until the

test software executes ncwrite_word to STOP_RANDOM_INTERRUPT.

■ If +int_cntl is in the command line, it overrides +int_random . The external

interrupt controller then becomes active and initiates the nested interrupt patterns

by filling PENDING_REGISTERin the sequence of marching 1s.

CODE EXAMPLE 6-1 Recommended Coding Sequence for the Interrupt Handler

INT_Start:
sipush 0x0ACC; // Enters critical region {
sipush 0xFFF8;
sethi 0x0;
ncstore_word; // Stores 0xACC to 0x0000FFF8,
sipush 0xFFF8; // indicating ack to the interrupt controller
sethi 0x0;
ncload_word; // Reads 0xACC from 0x0000FFF8

// } Exits critical region

sipush 0xFFF4; // Read/write to STOP_RANDOM_INTERRUPT (30'h0000fff4)
sethi 0x0; // if you need to stop assertion of random interrupts.
ncload_word;

priv_read_psr; // Turns on interrupt enable bit
sipush 0x0010; // if nested interrupts are allowed for the current test case;
ior; // otherwise, the IU turns it on at the return point.
priv_write_psr;

// Main_body begin {
Application: .
 .

// } end

priv_ret_from_trap; // Returns from trap
Chapter 6 Monitors 65

■ If +int_cmd is in the command line, it overrides +int_cntl and +int_random .

A command file, int_cmd_file , then schedules the nmi and irl <3:0> events to

check the priority of the traps, interrupts, and interrupt-related functions in other

units.

This operation also verifies the interaction between the IU and FPU, the stack

operation and the IU, the microcode, or the TRAPsoftware when an interrupt occurs.

You must prepare for this mode a force file named int_cmd_file in the working

directory. CODE EXAMPLE 6-2 is an example.

6.9 Random SMU Hold Generator
The random SMU hold generator randomly activates the smu_hold signal inside the

CPU core, even if an SMU stall condition is not really present. This is a useful way to

accelerate testing in the presence of pipeline holds caused by the SMU. Since the

SMU operates asynchronously to the execution of instructions in the pipeline, it can

potentially cause a hold in any clock cycle. The random SMU hold mechanism

allows us to hit corner cases involving the presence of an SMU stall that are not

easily encountered during normal program execution.

To activate this generator:

● Add the option +smu_hold to the command line.

To specify a frequency for the smu_hold signal:

● Add the option: +hold_seed_2 or +hold_seed_3 to the command line.

CODE EXAMPLE 6-2 Example of Interrupt Handler Code in Verilog

// define the interrupt level (1-16), 16 is nmi
`define INT_LEVEL 16
// define the trigger signal
`define INT_TRIGGER (negedge sys.pico.iu.datapath.ucode.u_done)
always @`INT_TRIGGER begin
pending_reg[`INT_LEVEL] <= #1 1'b1;
66 picoJava-II Verification Guide • March 1999

6.10 Statistics Monitor
The statistics monitor performs sampling at the rising edge of each clock cycle. It

gathers three types of information:

■ The average number of stack cache entries. To obtain this information, the

statistics monitor does the following:

■ Samples the numbers at each clock cycle.

■ Divides the aggregate sum by the total number of elapsed clock cycles at the

end of the simulation.

■ The number of timesthe non-ignored-hold signal is high, that is, the number

of times SMU hold conditions (smu_hold and pj_hold) are not ignored

To obtain this information, the statistics monitor keeps a count of whether non-
ignored-hold is true at each clock cycle. If so, it adds 1 to the counter.

■ The number of times that the top eight critical timing paths are hit. To obtain this

information, the statistics monitor does the following:

■ Checks when a signal changes from its source to the end of the timing path.

Instead of checking every point along the way, the monitor checks several

points along the path, including the end point (the signal going into the flip-

flop), thereby approximating whether the timing path is hit. We have identified

the timing paths from the bucket report file from gate-level synthesis.

■ Prints a message at the time of execution and increments a counter for each hit.

The statistics monitor prints the totals of the above statistics at the end of simulation.

To enable the statistics monitor:

● Add +statistics to the command line.

6.11 Activity Monitor
The activity monitor counts occurrences of certain events that reflect the degree of

activity in functional blocks. The power consumption of the design can be estimated

based on these statistics. The activity monitor keeps track of the following events:

■ ICU control is idle

■ ICRAM is disabled

■ I-Buffer is active
Chapter 6 Monitors 67

■ DCU reads

■ DCU writes

■ DCU line fills

■ DCRAM is disabled

■ Write Buffer is idle

■ DCU holds the pipe

■ SMU holds the pipe

■ ICU holds the pipe

■ Microcode is busy

■ FPU is idle

■ I-Cache accesses

■ I-Cache misses
68 picoJava-II Verification Guide • March 1999

PART II picoJava-II Verification Tests

CHAPTER 7

Verification of the
Instruction Cache Unit (ICU)

The Instruction Cache Unit (ICU) fetches instructions from the instruction cache (I-

Cache) for the decode block in the Integer Unit (IU). To separate the rest of the

pipeline from the fetch stage, an instruction buffer (I-Buffer) holds the instructions

fetched from memory until consumption by the IU.

This chapter contains the following sections:

■ Tests for Basic Functions on page 71

■ Tests for Instruction Cache Functional Units on page 72

■ Tests for Instruction Buffer (I-Buffer) on page 73

7.1 Tests for Basic Functions
This section describes basic I-Cache-related test operations; the next section explains

the tests for back-to-back cache operations.

TABLE 7-1 shows the ICU test coverage.

TABLE 7-1 Test Coverage for the ICU

Coverage Read Description

Alignment 2.1 Tests with different length of instructions go across word

(4 bytes), IB fetch (7 bytes), and instruction cache line (16

bytes) boundaries (icu_2_1.code).
71

7.2 Tests for Instruction Cache Functional
Units
This section describes the tests for the I-Cache functional units.

7.2.1 I-Cache Control (ic_cntl)

We test I-Cache control as follows:

■ Test accesses with different PCvalues (target PC, trap PC, or next PC).

The test case for I-Cache hits is icu_3_1_1.code .

The test cases for I-Cache misses are:

■ Test with goto instructions (icu_3_1_8.code) .

■ Test with two loops (icu_3_1_9.code).

■ Test select with different buses through random test cases.

7.2.2 Cache Read Misses

We test cache read misses as follows:

■ Test the I-Buffer with nine or more valid entries to stall the pipeline

(icu_3_2_1.code) (ibuf_full).

Cache hit 2.2 Reads with I-Cache hit in the first 4 bytes and the second

4 bytes in the cache line (icu_2_2.code).

Cache miss 2.3 Reads with an I-Cache miss, makes sure cache line fill

happens (icu_2_2.code) .

Disabled cache 2.4 Reads with a disabled I-Cache, makes sure it acts like NC

read and that no instruction is loaded to I-Cache

(icu_2_4.code).

icu_3_1_2.code (ifeq) icu_3_1_5.code (ifle)

icu_3_1_3_.code (ifne) icu_3_1_6.code (ifgt)

icu_3_1_4.code (iflt) icu_3_1_7.code (ifge)

TABLE 7-1 Test Coverage for the ICU (Continued)
72 picoJava-II Verification Guide • March 1999

■ Test with a new request to a different line when the ICU is filling a cache

(icu_3_1_8.code and icu_3_1_9.code).

■ Test at random with a new request to the same line that is being filled.

■ Test at random with external interrupt that goes high when the ICU is doing

cache line fill.

■ Test with a branch to a PC that has the same index as the current PC, but a

different tag (icu_3_1_10.code).

7.2.3 Noncacheable (NC) Reads

We test noncacheable (NC) reads as follows:

■ Test with NC reads and ensure that the data are not written into the I-Cache

(icu_2_4.code) (I-Cache disabled).

■ Test at random with NC reads with a different index. Random test cases with

monitor hit on all of these cases.

■ Test at random with an external interrupt equal to 1 at the same time that a

noncacheable request is sent to the bus.

7.3 Tests for Instruction Buffer (I-Buffer)
We test all combinations of the I-Buffer with monitor and random test cases, the

source for which is in sim/tests/ibufcov .

7.3.1 I-Buffer Control (ibuf_cntl)

We test I-Buffer control as follows:

■ Test with tag miss and ensure that the valid bit is reset (icu_3_4_1_1.code).

■ Access the same flush line and ensure that a cache miss occurs

(icu_3_4_1_2.code).

■ Test with a specific address: Diagnostic-write a valid bit to the address. Create a

new line with the same index, then flush the address. Diagnostic-read if the old

address’s valid bit is clear (icu_3_4_1_3.code).

For a different index, use icu_3_4_1_4.code .
Chapter 7 Verification of the Instruction Cache Unit (ICU) 73

7.3.2 I-Cache Datapath (icu_dpath)

We test read and write data from the I-Cache with a different word and index.

The test cases are icu_3_5_1.code (I-Cache data) and icu_3_5_2.code (I-Cache

tag).

7.3.3 Disabled I-Cache Instructions

The ICU treats all requests to the I-Cache as noncacheable requests and forwards

them to the BIU.

We test with a line fill operation, followed by a disabled I-Cache instruction. Then,

send a new request to the same line that is being filled (icu_3_6_1.code).

7.3.4 Invalidation of the Cache

If the address is present in the instruction cache, the ICU invalidates it. However, if

the instruction cache is not enabled (PSR.ICE = 0), then the ICU ignores the

invalidation request.

We test with ICE = 0 and ICE = 1 .

The test cases are icu_4_4_1.code (PSR.ICE = 1) and icu_4_4_2.code
(PSR.ICE = 0).

7.3.5 Boot Mode

The test case for boot mode is icu_4_5_1.code .
74 picoJava-II Verification Guide • March 1999

CHAPTER 8

Verification of the Integer Unit (IU)

This chapter describes the verification plan for the Integer Unit (IU) at both the

functional and architectural levels. It contains the following sections:

■ Functional Tests on page 75

■ Tests for Folding Combinations on page 81

■ Tests for Back-to-Back Instructions on page 82

■ Tests for Polymorphic Instructions on page 82

■ Miscellaneous Tests on page 86

8.1 Functional Tests
TABLE 8-1 lists the functional tests for the IU.

TABLE 8-1 Functional Tests for the IU

Number Name Description

1 diag_pass.code Verifies the reset code and error reporting

mechanism for *.code files.

2 diag_detect.code Verifies a small set of instructions for self-

checking diagnostics, such as bipush , sipush ,

if_icmpeq , and if_icmpn , during processor

block integration.

3 arithm_int.code Verifies the results of iadd , isub , idiv , imul ,

irem , and ineg . This test picks operands

arbitrarily and performs one calculation for

each instruction.
75

4 arithm_long.code Verifies the results of ladd , lsub , ldiv , lmul ,

lrem , and lneg . This test picks operands

arbitrarily and performs one calculation for

each instruction.

5 compare_branch.code Verifies the comparison and branching for

if cond, if_icmp condition, lcmp ,

if_acmp condition, goto , jsr , ret , and

ret_from_sub .

6 convert_int.code Verifies the conversion operation for i2b , i2c ,

i2s , and i2l . This test covers sample cases

where sign-extension must or must not occur

for each conversion.

7 convert_long.code Verifies the conversion operation for l2i and

ensures that truncation of signed words occurs

correctly.

8 locvar_dbl.code Verifies the store to and load from a locvar of

the type double. This test uses both forms of

dload_ n|dstore_ n and

dload n|dstore n.

9 locvar_float.code Verifies the store to and load from a locvar of

the type float. This test uses both forms of

fload_ n|fstore_ n and

fload n|fstore n.

10 locvar_int.code Verifies the store to and load from a locvar of

the type int. This test uses both forms of

iload_ n|istore_ n and

iload n|istore n.

11 locvar_long.code Verifies the store to and load from a locvar of

the type long. This test uses both forms of

lload_ n|lstore_ n and

lload n|lstore n.

12 locvar_object.code Verifies the store to and load from a locvar of

the type object. This test uses both forms of a
oload_ n|ostore_ n and

oload n|ostore n.

13 logic_int.code Verifies the results of ishl , ishr , iushr ,

iand , ior , and ixor . This test picks operands

arbitrarily, performs one calculation for each

instruction, and tests the difference between

ishr and iushr .

TABLE 8-1 Functional Tests for the IU (Continued)

Number Name Description
76 picoJava-II Verification Guide • March 1999

14 logic_long.code Verifies the results of lshl , lshr , lushr ,

land , lor , and lxor . This test picks operands

arbitrarily, performs one calculation for each

instruction, and tests the difference between

lshr and lushr .

15 push_dconst.code Verifies that dconst_0 and dconst_1 push

the correct values onto the stack.

16 push_fconst.code Verifies that fconst_0 , fconst_1 , and

fconst_2 push the correct values onto the

stack.

17 push_iconst.code Verifies that iconst_ x pushes the correct

values onto the stack.

18 push_lconst.code Verifies that lconst_0 and lconst_1 push

the correct values onto the stack.

19 stack_instr_a.code Sets up the stack and verifies that nop , pop ,

pop2 , dup , dup2 , and swap modifies it

correctly.

20 stack_instr_b.code Verifies the operation of dup_x1 , dup_x2 ,

dup2_x1 , and dup2_x2 .

21, 22 store_load_byte.code
ncstore_load_byte.code

Verify the operation of store_byte ,

load_byte , and load_ubyte . These tests also

verify the sign extension for load_byte , no

sign extension for load_ubyte , data caching

through diagnostic cache instructions, big and

little endian addressing, and reads and writes

to noncacheable address space.

23, 24 store_load_short.code
ncstore_load_short.code

Verify the operations of store_short ,

load_char , and load_short . These tests also

verify the sign extension for load_short , no

sign extension for load_char , data caching

through diagnostic cache instructions, big and

little endian addressing, and reads and writes

to noncacheable address space.

25, 26 store_load_short_oe.code
ncstore_load_short.code

Verify the operations of store_short_oe ,

load_char_oe , and load_short_oe . These

tests also verify the sign extension for

load_short_oe , no sign extension for

load_char_oe , data caching through

diagnostic cache instructions, big and little

endian addressing, and reads and writes to

noncacheable address space.

TABLE 8-1 Functional Tests for the IU (Continued)

Number Name Description
Chapter 8 Verification of the Integer Unit (IU) 77

27, 28 store_load_word.code
ncstore_load_word.code

Verify the operations of store_word and

load_word , data caching through diagnostic

cache instructions, big and little endian

addressing, and reads and writes to

noncacheable address space.

29, 30 store_load_word_oe.code
ncstore_load_word_oe.code

Verify the operations of store_word_oe and

load_word_oe , data caching through

diagnostic cache instructions, big and little

endian addressing, and reads and writes to

noncacheable address space.

31 store_load_byte_index.code Verifies the operations of store_byte_index ,

load_byte_index , and load_ubyte_index .

This test also verifies sign extension for

load_byte_index , no sign extension for

load_ubyte_index , data caching through

diagnostic cache instructions, and reads and

writes to noncacheable address space.

32 store_load_short_index.code Verifies the operations of

store_short_index , load_short_index ,

and load_char_index . This test also verifies

sign extension for load_short_index , no

sign extension for load_char_index , data

caching through diagnostic cache instructions,

big and little endian addressing, and reads and

writes to noncacheable address space.

33, 34 store_load_word_index.code
nastore_word_index.code

Verify the operations of store_word_index ,

nastore_word_index , and

load_word_index . These tests also verify

data caching through diagnostic cache

instructions, big and little endian addressing,

and reads and writes to noncacheable address

space.

35, 36 dneg_test.code ,

lneg_test.code
Verify the dneg and lneg operations.

37 iucmp_test.code Verifies the iucmp operation.

38 zero_line.code Verifies that a particular line in the data cache

is zeroed out. This test does not check the tags

after issuing the instruction.

39 priv_rw_reg.code Verifies that write_ regname,

priv_write_ regname, read_ regname, and

priv_read_ regname can write to the writable

bits of the registers.

TABLE 8-1 Functional Tests for the IU (Continued)

Number Name Description
78 picoJava-II Verification Guide • March 1999

40 sethi.code Verifies the operation of the sethi instruction.

41 wide_test.code Verifies the operations of the

xload_w| xstore_w and iinc_w instructions.

42 call_return.jasm Verifies the functionality of the call ,

return0 , return1 , and return2 instructions.

43 nonnull_quick.jasm Verifies the functionality of the

nonnull_quick instruction.

44 monitor_test.jasm Verifies the monitorenter and monitorexit
instructions in conjunction with the

lockcount and lockaddress registers.

45 ldc_test.jasm Verifies the ldc_quick , ldc_w_quick ,

aldc_quick , and aldc_w_quick instructions.

46 ldc2_test.jasm Verifies the ldc2_w_quick instruction.

47 putget.jasm Verifies the functionality of the

putstatic_quick , putstatic2_quick ,

getstatic_quick , getstatic2_quick ,

putfield_quick , putfield2_quick ,

getfield_quick , getfield2_quick ,

putfield_quick_w , and

getfield_quick_w instructions.

48, 49 aputaget_gcvector.jasm
aputaget_gctrain.jasm

Verify the aputstatic_quick ,

agetstatic_quick , aputfield_quick , and

agetfield_quick instructions and associated

garbage collection traps.

50 aputaget_null.jasm Verifies NullPointerException with the

aputfield_quick and agetfield_quick
instructions.

51 arrays.java Verifies the basic operation of all array

instructions in The Java Virtual Machine
Specification.

52 returns.java Verifies the basic operation of all return

instructions in The Java Virtual Machine
Specification.

53 invoking_banana.java Verifies the basic operation of all

invoke_*_quick instructions that are

implemented in hardware.

54 fib_2.java Verifies method invocation and return with a

simple recursive algorithm.

TABLE 8-1 Functional Tests for the IU (Continued)

Number Name Description
Chapter 8 Verification of the Integer Unit (IU) 79

For details, see the following source directories:

sim/test/pico_vts/basic
sim/test/pico_vts/basic_java
sim/test/pico_vts/instr_tests

Testing of instructions not in TABLE 8-1 is part of the verification for the cache or trap.

See Chapter 7, Verification of the Instruction Cache Unit (ICU), Chapter 10, Verification
of the Data Cache Unit (DCU), and Chapter 12, Traps and Interrupts.

Architecture tests for the IU verify the following features:

■ Hazard detection and prevention

■ Branch prediction

■ Folding

■ Handling of polymorphic instructions and boundary conditions

55 allinst.jasm Verifies the functionality of RISC-type

instructions in the instruction set.

56 if_acmp.code Verifies if_acmpne and if_acmpeq
operations.

57 B2B_1.code Verifies that fadd and dadd occur back to

back.

58 allmul.code Verifies dmul and fmul operations.

59 bigarray.code Tests load and store of large arrays (> 16-Mbyte

elements).

60 bigarray_handles.code Tests load and store of large arrays (> 16-Mbyte

elements) with handles.

61 inlining.java Verifies basic operation of invokestatic and

invokevirtual .

62 allinst_brk.jasm Verifies that breakpoint operations work with

branches, basic instructions, register

operations, and load/stores.

63 monitor_test_2 Triggers stack cache miss when

monitorenter is executed by setting VARS 60

entries away from OPTOP.

TABLE 8-1 Functional Tests for the IU (Continued)

Number Name Description
80 picoJava-II Verification Guide • March 1999

TABLE 8-2 lists the hazard tests. For details, see the sources at

sim/test/pico_vts/directed/iu/hazard .

8.2 Tests for Folding Combinations
The IU can “fold” up to four instructions to decrease the cycles per instruction (CPI).

For details, see the sources at sim/test/pico_vts/directed/iu/fold .

There are a total of 374 tests to verify all possible folding combinations.

TABLE 8-2 Hazard Tests for the IU

Number Name Description

1-30 alu_hzd_1-30.code Creates the test by setting i = 1, j = 1 to 6,

and k = 1 to 6.

31-60 stack_instr_hzd_1-30.code Creates the test by setting i = 2, j = 1 to 6,

and k = 1 to 6.

61-90 locvar_hzd_1-30.code Creates the test by setting i = 3, j = 1 to 6,

and k = 1 to 6.

91-120 convers_hzd_1-30.code Creates the test by setting i = 4, j = 1 to 6,

and k = 1 to 6.

121-150 stack_push_hzd_1-30.code Creates the test by setting i = 5, j = 1 to 6,

and k = 1 to 6.

151-180 fpu_hzd_1-30.code Creates the test by setting i = 6, j = 1 to 6,

and k = 1 to 6.

181-182 branch_hzd_1-2.code Creates the test for hazards with branch

instructions.
Chapter 8 Verification of the Integer Unit (IU) 81

8.3 Tests for Back-to-Back Instructions
TABLE 8-3 lists the tests for back-to-back instructions.

8.4 Tests for Polymorphic Instructions
A polymorphic instruction contains one functional specification, but several design

forms for which the functionality must be correct.

8.4.1 Local Variable and Object Field Load or Store

A load or store from a local variable or a field in an object can have different forms.

The following cases are tested:

■ There is a stack cache hit during a read or write to a local variable.

■ There is a stack cache miss but a data cache hit during a read or write to a local

variable.

■ There is a stack cache miss and a data cache miss during a read or write to a local

variable.

TABLE 8-3 Tests for Back-to-Back Instructions

Name Description

cache_flush_b2b.code Tests the back-to-back cache_flush instruction.

imul_b2b.code Tests the back-to-back imul instruction.

store_load_b2b.code Tests the back-to-back load and store instructions.

cache_index_flush_b2b.code Tests the back-to-back cache_index_flush
instruction.

load_word_b2b.code Tests the back-to-back load_word instruction.

zero_line_b2b.code Tests the back-to-back zero_line instruction.

getstatic2_quick_b2b.jasm Tests the back-to-back getstatic2_quick instruction.

putstatic2_quick_b2b.jasm Tests the back-to-back putstatic2_quick instruction.

getstatic_quick_b2b.jasm Tests the back-to-back getstatic_quick instruction.

putstatic_quick_b2b.jasm Tests the back-to-back putstatic_quick instruction.
82 picoJava-II Verification Guide • March 1999

■ An object reference is a direct pointer to the memory allocated from the heap for

the object data during a read or write to a field.

■ An object reference is a pointer to a handle during a read or write to a field.

The tests for these cases are a subset of the functional tests in TABLE 8-1 and are

available in sim/test/pico_vts/basic and

sim/test/pico_vts/basic_java . Run these tests with various configurations to

target all of the above cases.

8.4.2 Microcode Instructions

Tests for microcode instructions are necessary for flagging exceptions and stack

cache misses during accesses of the stack data and object references (pointers to

handles) as well as other conditions, such as interrupts.

TABLE 8-4 lists the microcode tests. It is a good idea to run these tests with different

cache sizes, with and without references to handles, and with Verilog tasks to

generate interrupts during microcode operations. For details, see the sources in

sim/test/pico_vts/directed/iu/microcode .

TABLE 8-4 Microcode Tests for the IU

Number Name Description

1-8 xaload_null.jasm Verifies that an array load instruction on a null

arrayref causes a NullPointerException trap.

9-14 xarray.jasm Verifies array operations, sign extensions on loads,

and so on.

15-21 xarray_ovf.jasm Verifies that an array operation out of bounds causes

an ArrayIndexOutOfBoundsException trap.

22-29 xastore_null.jasm Verifies that an array store instruction on a null

arrayref causes a NullPointerException trap.

30-38 return, xreturn.jasm Verifies stack deallocation, stack cache misses on

restoring registers from the method frame, and back-

to-back returns.

39 invoke_null.jasm Verifies that invoke_*_quick with a null object

causes a NullPointerException trap.

40 invoker.jasm Verifies stack allocation, a large number of parameters

causing stack cache miss while accessing object

references, and so on for all invoke_*_quick
instructions.
Chapter 8 Verification of the Integer Unit (IU) 83

41 call_return.jasm Verifies stack allocation, deallocation for call,

return0 , return1 , and return2 . Checks for the

stack cache miss case while restoring registers on a

return.

42 get_curr_class.jasm Verifies the correct operation of the

get_current_class instruction.

43 checkcast_test.jasm Verifies trapping and nontrapping modes of the

checkcast_quick microcode.

44 exit_sync_meth.jasm Verifies the operation of exit_sync_method and the

return followed by the exit_sync_method .

45 instanceof_test.java Verifies trapping and nontrapping modes of

instanceof_quick .

46 tableswitch.java Verifies switching with positive and negative indices,

large and small offsets, and so on.

47 invokesuper_q.jasm Verifies the invokesuper_quick mask off bits 1 and

0 of obj_Hint_Block .

48, 49 call_brkg
goto_brk

Verify breakpoint operations involving brk1a ,

brk2a , brk12c .

50-54 aastore_q_1
aastore_q_2
aastore_q_3
aastore_q_4
aastore_q_5

Verify aastore_quick operations.

55 anewarray_null Verifies creation of array using anewarray .

56 arraylength_null Verifies arraylength operation on a null object.

57, 58 ucode_smiss_1
ucode_smiss_2

Tests for microcode accesses which miss in the stack

cache.

59 larray_smiss Verifies access to array of longs with stack cache miss.

60 invokesuper_q Verifies invoke_super_quick operation.

61 aaload_instanceof Verifies back-to-back operation of aaload and

instanceof .

62-64 xarray_extended Verifies array access operations for large arrays (> 16

Mbytes).

65-67 xarray_handle_extended Verifies array access operations with handle bit set for

large arrays (> 16 Mbytes).

68 barray_gl.jasm Test case to check global register bypassing during

microcode instruction in E stage.

TABLE 8-4 Microcode Tests for the IU (Continued)

Number Name Description
84 picoJava-II Verification Guide • March 1999

8.4.3 Boundary Conditions

Boundary condition tests verify corner cases in the design. Examples are:

■ Local variable load and store: Storing a long or double local variable with one

word in the stack cache and one word in the data cache.

■ Branch instructions: Using maximum and minimum branch offsets.

■ Arithmetic, logic, and shift instructions: Operands that cause overflow and

underflow.

■ Local variable load or store: Accessing the local variable 255 and using the wide

index.

TABLE 8-5 lists the tests. For details, see the sources in

sim/test/pico_vts/directed/iu/boundary .

69 barray_gl_sw1.jasm Test case to check global register bypassing with

microcode instruction followed by nop .

70 barray_gl_sw2.jasm Test case to check global register bypassing during

microcode execution with write_global followed

by nop .

71 barray_brk_halt Verifies two breakpoint halts.

72 ucode_ext_halt Test case for invoke instructions.

TABLE 8-5 Boundary Tests for the IU

Number Name Description

1 goto_bound.code Tests forward and backward branching with

boundary values of the 2-byte signed jump offset.

2 jsr_ret_bound.code Tests the jsr and ret instructions for wide offsets.

3 if_w_1.code Tests the conditional branch if condition for the true

condition with wide offset.

4 if_w_2.code Tests the conditional branch if condition for the false

condition with wide offset.

5 if_w_3.code Tests the conditional branch if_icmp condition with

wide offset.

TABLE 8-4 Microcode Tests for the IU (Continued)

Number Name Description
Chapter 8 Verification of the Integer Unit (IU) 85

8.5 Miscellaneous Tests
TABLE 8-6 lists the miscellaneous tests for the IU. For details, see the sources in

sim/test/pico_vts/directed/iu/other_tests .

TABLE 8-6 Miscellaneous IU Tests

Number Name Description

1 power_down.code Tests software-initiated powerdown with the

priv_powerdown instruction in irl_f.jasm
(exception handler). Runs the test with random

IRL /NMI interrupts. irl_f puts the picoJava-II core

in powerdown mode, and other interrupts then

wake it up.

2 priv_reset.code Tests software-initiated reset with the priv_reset
instruction.

3 dsub_test.jasm Verifies a corner case in the IU-SMU-DCU interface.

4 iload_test.jasm Verifies a corner case in the IU-SMU-DCU interface.

5 edo101.jasm Verifies a corner case bug caused by fdiv followed

by the cache_flush instruction.

6 boot_mode Verifies boot8 mode.

7 load_boundary Verifies long operations with half of the operands in

the stack cache and the other half in the data cache.

8 dcu_smu Verifies SMU load hits in the DCU and an extended

load instruction with a simultaneous error

acknowledgment.

9 load_word_back.jasm Verifies back-to-back extended load instructions

missing the data cache.

10 load_word_lop.jasm Verifies a load_word operation followed by a long

operation. The first half of an operand missing in the

data cache is required from load_word ; the other

half is a hit in the data cache for the long operation.

11 branch_trap Verifies the branch instructions followed by various

trap instructions, and vice versa.

12 load_boundary_mul.jasm Verifies the load_word operation followed by a

multiplication. The operand for the multiplication is

required from load_word and is missing in the data

cache; t he load_word address is equal to the

SC_BOTTOMaddress.
86 picoJava-II Verification Guide • March 1999

Other miscellaneous tests under sim/test/pico_vts include:

■ Tests with random code that hit bugs during the design of picoJava-II, located in

the directories random_failure and maya_random_failure

■ Tests that cover all possible instruction buffer states, located in the directory

ibufcov

■ Tests that stress the stack cache and the invoke_* instructions, located in the

directory stress
Chapter 8 Verification of the Integer Unit (IU) 87

88 picoJava-II Verification Guide • March 1999

CHAPTER 9

Verification of the
Floating Point Unit (FPU)

The Floating Point Unit (FPU) in picoJava-II performs all the operations for floats

and doubles.

This chapter contains the following sections:

■ Overview on page 89

■ Functional Tests on page 90

9.1 Overview
The FPU interacts with the Integer Unit (IU) in the execution stage. It takes multiple

cycles to complete an operation. The IU can hold the FPU in both the input and

output stages; it can also terminate an FPU operation in the case of a trap or an

interrupt.

The FPU does not throw exceptions for its operations.
89

9.2 Functional Tests
TABLE 9-1 describes the functional tests for the FPU.

TABLE 9-1 Functional Tests for the FPU

Number Name Description

1 B2B_1.code
B2B_2.code
B2B_3.code
B2B_4.code
B2B_5.code
B2B_6.code
B2B_7.code
B2B_8.code
B2B_9.code
B2B_10.code

Test all combinations of back-to-back operations in the

FPU for both floats and doubles.

2 BYPASS_1.code
BYPASS_2.code

Test the bypassing cases for the FPU operations in the

execution stage.

3 DADD_000.code
DADD_001.code
DADD_002.code
DADD_003.code
DADD_004.code
DADD_005.code
DADD_006.code
DADD_010.code
DADD_011.code
DADD_012.code
DADD_013.code
DADD_014.code
DADD_015.code

Test the DADD operation.

4 FADD_000.code
FADD_001.code
FADD_002.code
FADD_003.code
FADD_004.code
FADD_005.code
FADD_006.code
FADD_010.code
FADD_011.code
FADD_012.code
FADD_013.code
FADD_014.code
FADD_015.code

Test the FADD operation.
90 picoJava-II Verification Guide • March 1999

5 FSUB_000.code
FSUB_001.code
FSUB_002.code
FSUB_003.code
FSUB_004.code
FSUB_005.code
FSUB_006.code
FSUB_010.code
FSUB_011.code
FSUB_012.code
FSUB_013.code
FSUB_014.code
FSUB_015.code

Test the FSUB operation.

6 FCMPG_001.code
FCMPG_002.code
FCMPG_003.code
FCMPG_004.code
FCMPG_005.code
FCMPG_006.code
FCMPG_010.code
FCMPG_011.code
FCMPG_012.code
FCMPG_013.code
FCMPG_014.code
FCMPG_015.code

Test the FCMPG operation.

7 FCMPL_001.code
FCMPL_002.code
FCMPL_003.code
FCMPL_004.code
FCMPL_005.code
FCMPL_006.code
FCMPL_010.code
FCMPL_011.code
FCMPL_012.code
FCMPL_013.code
FCMPL_014.code
FCMPL_015.code

Test the FCMPL operation.

TABLE 9-1 Functional Tests for the FPU (Continued)

Number Name Description
Chapter 9 Verification of the Floating Point Unit (FPU) 91

8 DSUB_000.code
DSUB_001.code
DSUB_002.code
DSUB_003.code
DSUB_004.code
DSUB_005.code
DSUB_006.code
DSUB_010.code
DSUB_011.code
DSUB_012.code
DSUB_013.code
DSUB_014.code
DSUB_015.code

Test the DSUB operation.

9 F2D_000.code
F2D_010.code

Test the F2D operation.

10 F2I_000.code
F2I_010.code

Test the F2I operation.

11 F2L_000.code
F2L_010.code

Test F2L operation.

12 D2F_000.code
D2F_010.code

Test D2F operation.

13 D2I_000.code
D2I_010.code

Test D2I operation.

14 D2L_000.code
D2L_010.code

Test D2L operation.

15 DCMPG_001.code
DCMPG_002.code
DCMPG_003.code
DCMPG_004.code
DCMPG_005.code
DCMPG_006.code
DCMPG_010.code
DCMPG_011.code
DCMPG_012.code
DCMPG_013.code
DCMPG_014.code
DCMPG_015.code

Test the DCMPG operation.

TABLE 9-1 Functional Tests for the FPU (Continued)

Number Name Description
92 picoJava-II Verification Guide • March 1999

16 DCMPL_001.code
DCMPL_002.code
DCMPL_003.code
DCMPL_004.code
DCMPL_005.code
DCMPL_006.code
DCMPL_010.code
DCMPL_011.code
DCMPL_012.code
DCMPL_013.code
DCMPL_014.code
DCMPL_015.code

Test the DCMPL operation.

17 I2D_000.code
I2D_010.code

Test the I2D operation.

18 I2F_000.code
I2F_010.code

Test the I2F operation.

19 L2D_000.code
L2D_010.code

Test the L2D operation

20 L2F_000.code
L2F_010.code

Test the L2F operation.

21 all_mul.code Tests the DMUL operation.

22 ddiv_nan.code Tests DDIV, including NaN cases.

23 drem_nan.code
dmul_nan.code

Test DREM and DMUL, including NaN cases.

24 fmul_nan.code
frem_nan.code
fdiv_nan.code

Test FMUL, FREM, FDIV, including NaN cases.

25 divbypass.code
mulbypass_1.code
rembypass.code

Test bypass cases for DDIV, DMUL, and DREM.

26 DREM_010.code
DREM_011.code
DREM_012.code
DREM_013.code
DREM_014.code

Test the DREM operation.

27 FREM_010.code

FREM_011.code

FREM_012.code

FREM_013.code

FREM_014.code

Test the FREM operation.

TABLE 9-1 Functional Tests for the FPU (Continued)

Number Name Description
Chapter 9 Verification of the Floating Point Unit (FPU) 93

The above test cases verify the following FPU functionalities:

■ Corner vectors such as not-a-numbers (NaNs), zeroes, and infinities

■ Underflow and overflow

■ Operations that result in rounding to zero

■ Operations that result in rounding to the nearest mode

■ Widening and narrowing conversions

■ Operations that involve denormals

■ Back-to-back FPU operations

■ Bypassing of data logic for all FPU operations

■ Holds while FPU operations are underway

■ Interrupts while FPU operations are underway

28 DDIV_010.code

DDIV_011.code

DDIV_012.code

DDIV_013.code

DDIV_014.code

DDIV_015.code

Test the DDIV operation.

29 FDIV_010.code

FDIV_011.code

FDIV_012.code

FDIV_013.code

FDIV_014.code

FDIV_015.code

Test the FDIV operation.

30 FMUL_010.code

FMUL_011.code

FMUL_012.code

FMUL_013.code

FMUL_014.code

FMUL_015.code

Test the FMUL operation.

31 DMUL_010.code

DMUL_011.code

DMUL_012.code

DMUL_013.code

DMUL_014.code

DMUL_015.code

Test the DMUL operation.

32 fmul_1.code Tests FMUL and DMUL operation.

TABLE 9-1 Functional Tests for the FPU (Continued)

Number Name Description
94 picoJava-II Verification Guide • March 1999

CHAPTER 10

Verification of the Data Cache Unit
(DCU)

The picoJava-II Data Cache Unit (DCU) manages all requests to the data cache.

This chapter contains the following sections:

■ Test Coverage on page 96

■ Functional Tests on page 98

■ Tests for Noncacheable Loads on page 100

■ Tests for Noncacheable Stores on page 100

■ Tests for Zeroing Out of Cache Lines on page 101

■ Tests for Flushing of Cache Comparisons on page 101

■ Tests for Cache-Indexed Flushing on page 102

■ Tests for Disabling of the Data Cache on page 102

■ Tests for Diagnostic Reads and Writes on page 102

■ Tests for Invalidation of the Cache on page 102

■ Tests for Dispatches of Load or Store Instructions on page 103
95

10.1 Test Coverage
TABLE 10-1 shows the verification coverage for the data cache.

TABLE 10-1 Test Coverage for the DCU

Scenario Instructions Description Test Case

Alignment of load

instructions

load_ubyte
load_byte
load_short
load_word
load_char_oe
load_short_oe
load_word_oe
load_word_index
load_short_index
load_char_index
load_byte_index
load_ubyte_index

Test all load

instructions with the

last byte address from

0 to F.

exp_4_1_7_1.code
(exception

verification plan)

Alignment of

store instructions

store_byte
store_short
store_word
store_short_oe
store_word_oe
store_word_index
nastore_word_index
store_short_index
store_byte_index

Test all store

instructions with the

last byte address from

0 to F.

exp_4_1_7_2.code
(exception

verification plan)

Alignment of

cache operations

zero_line
cache_flush
cache_index_flush

Test all cache

operation instructions

with the last byte

address from 0 to F.

dcu_2_3_2.code

Loading of

instructions with

different endian

modes

load_ubyte
load_byte
load_char
load_short
load_word
load_char_oe
load_short_oe
load_word_oe
load_word_index
load_short_index
load_char_index
load_byte_index
load_ubyte_index

Test all load

instructions with

different endian

modes.

dcu_2_4_2.code
96 picoJava-II Verification Guide • March 1999

Storing of

instructions with

different endian

modes

store_byte
store_short
store_word
store_short_oe
store_word_oe
store_load_index
nastore_word_index
store_short_index
store_byte_index

Test all store

instructions with

different endian

modes.

dcu_2_5_2.code

Cache operation

instructions with

different endian

modes

zero_line
cache_flush
cache_index_flush

Test all cache

operation instructions

with big endian

mode.

dcu_2_6.code

Loading with

cache hits

Test load cache hits. dcu_2_7.code

Storing with

cache hits

Test store cache hits. dcu_2_8.code

Cache operations

with cache hits

Test a ache operation

with a cache hit.

dcu_2_9_1.code

Loading with

cache misses

Test a load with a

cache miss to a clean

line; ensure that a

cache line fill occurs.

dcu_2_7.code

Storing with

cache misses

Test a store with a

cache miss to a clean

line; ensure that a

cache line fill occurs.

dcu_2_8.code

Cache operations

with cache misses

zero_line
cache_flush
cache_index_flush

Test a cache operation

with a cache miss to a

clean line; ensure that

a cache line fill

occurs.

dcu_2_9_1.code

Copybacks due to

loads

load_word Tests copyback

caused by a load.

dcu_2_13_2.code

Copybacks due to

stores

store_word Tests copyback

caused by a store.

dcu_2_14_2.code

Copybacks due to

cache operations

zero_line
cache_flush
cache_index_flush

Test copyback caused

by a cache operation.

dcu_2_15_2.code

Update of the

dirty bit by loads

load_word Tests that a load

updates the dirty bit.

dcu_2_16_2.code

TABLE 10-1 Test Coverage for the DCU (Continued)

Scenario Instructions Description Test Case
Chapter 10 Verification of the Data Cache Unit (DCU) 97

10.2 Functional Tests
This section describes the functional tests for the DCU.

10.2.1 Arbiter

To ensure correct arbiter operations, the test checks that the pipeline request has a

higher priority than the dribbling manager’s request.

Update of the

dirty bit by stores

store_word Tests that a store

updates the dirty bit.

dcu_2_17_2.code

Nonupdate of the

dirty bit by cache

operations

zero_line updates a

dirty bit;

cache_flush and

cache_index_flush
do not.

Test that cache

operations may

update the dirty bit.

dcu_2_18_2.code

Nonupdate of the

LRU bit by loads

load_byte Tests that a load does

not update the LRU

bit.

dcu_2_19_2.code

Update of the

LRU bit by stores

store_short Tests that a store

updates the LRU bit.

dcu_2_20_2.code

Update of the

LRU bit by cache

operations

zero_line
cache_flush
cache_index_flush

Test that a cache

operation updates the

LRU bit.

dcu_2_21_2.code

Loading with a

disabled cache

load_word Tests that a disabled

cache acts like a

noncacheable load.

dcu_2_22_2.code

Storing with a

disabled cache

store_word Tests that a disabled

cache acts like a

noncacheable store.

dcu_2_23_2.code

Cache operations

with a disabled

cache

zero_line
cache_flush
cache_index_flush

Test that cache

flushes act like nop
and trap on

zero_line .

dcu_2_24_2.code

TABLE 10-1 Test Coverage for the DCU (Continued)

Scenario Instructions Description Test Case
98 picoJava-II Verification Guide • March 1999

10.2.2 Address Control

The tests verify the following for address control:

■ The LRU bit is updated on a cache line fill (dcu_2_20_2.code).

■ The LRU bit is not updated on a load hit (dcu_3_2_1.code).

■ The LRU bit is updated on a store hit in the cache (dcu_3_2_2.code).

10.2.3 Aligner Control

The tests verify aligner control as follows:

■ Test traps for misaligned loads, stores and cache operations (see Chapter 12, Traps
and Interrupts).

■ Test at random different pj_ack <2:0> values returned from the BIU.

10.2.4 Miss Control

The tests check for misses randomly with an external interrupt equal to 1 while the

DCU is performing a line fill. A line fill completes prior to acceptance of the external

interrupt.

10.2.5 Writeback Control

The tests verify writebacks as follows:

■ Test that when a miss is detected, the line to be replaced is determined by the

invalid bit before the LRU bit is checked (dcu_3_5_1.code).

■ Test that if both entries are valid, then the LRU bit is used to determine which line

is to be replaced (dcu_3_2_1.code and dcu_3_2_2.code).

■ Test that if both entries are invalid, then the LRU bit is not used to determine

which line is to be replaced, and that the first line is chosen (dcu_3_2_1.code
and dcu_3_2_2.code).

■ Test that in case of a miss while the DCU is performing a copyback, the cache line

fill waits for the writeback to be complete before it starts its process

(dcu_3_5_3.code).

■ Test randomly with an external interrupt equal to 1 while the DCU is performing

a copyback. Verify that the copyback is complete prior to acceptance of the

external interrupt.
Chapter 10 Verification of the Data Cache Unit (DCU) 99

■ Test with a new request to the same dirty line while the latter is performing a

writeback. Verify that the DCU waits for the writeback to be completed and then

starts another cache line fill (dcu_3_5_2.code).

■ Test back-to-back load and store instructions to the same line (dcu_3_5_3.code).

10.2.6 Data Cache Datapath

All test cases test this datapath.

10.3 Tests for Noncacheable Loads
Noncacheable loads force a cache miss and send a noncacheable request to the bus.

Once available, the data are bypassed to the pipeline.

The tests are as follows:

■ Test the access by byte, half-word, and word load instructions to different

positions of a cache line (exp_4_1_7_3.code , read exception verification plan).

The last byte of the address ranges from 0 to F.

■ Test the little and big endian for noncacheable load instructions

(dcu_4_0_4.code).

■ Test a noncacheable load and verify that the data are not written into the data

cache (dcu_4_0_6.code).

■ Test a noncacheable load hit to a dirty line in the cache (dcu_4_0_8.code).

10.4 Tests for Noncacheable Stores
The tests for noncacheable stores are as follows:

■ Test byte, half-word, and word store instructions access to different positions of a

cache line (exp_4_1_7_4.code (read exception verification plan). The last byte

of the address ranges from 0 to F.

■ Test the big endian for noncacheable store instructions (dcu_4_1_4.code).

■ Test a noncacheable store and verify that the DCU does not write the data into the

data cache (dcu_4_1_6.code).
100 picoJava-II Verification Guide • March 1999

■ Test a noncacheable store, followed by a cacheable load miss to another clean line.

The DCU starts a cache line fill during the transaction of the noncacheable store

(dcu_4_1_7.code).

■ Test a noncacheable store, followed by a cacheable load miss to another dirty line.

The DCU waits for the noncacheable store to finish before the new cache line fill

starts (dcu_4_1_8.code).

10.5 Tests for Zeroing Out of Cache Lines
The tests for zeroing out of cache lines are as follows:

■ Test zeroing a dirty line, followed by another request to the same line that was

zeroed during the writeback transaction. It is a cache hit with 0 value data. Verify

that the DCU forwards zeroes to the pipeline instead of the writeback data

(dcu_4_2_1.code) (zero_line).

■ Test zeroing a dirty line, followed by another miss request to the same index line

during the writeback transaction. The DCU stalls the new request. Verify that the

zeroes write back to the main memory (dcu_4_2_2.code) (zero_line).

■ Test with a zero_line to both ways with the same tag (only one is valid)

(dcu_4_2_3.code).

10.6 Tests for Flushing of Cache Comparisons
Flush comparisons accommodate self-modifying code. The tests are as follows:

■ Test that flushing occurs only when the tag is hit (dcu_4_3_1.code)

(cache_flush).

■ Test that the DCU changes the LRU bit (dcu_4_3_2.code).

■ Test with a new request to the same flushed line, which is dirty, and verify that

the DCU performs a copyback for it. The DCU stalls the new request until the

copyback and invalidation operations are complete (dcu_4_3_3.code).

■ Test with cache_flush to both ways with the same tag; only one is valid

(dcu_4_3_4.code).
Chapter 10 Verification of the Data Cache Unit (DCU) 101

10.7 Tests for Cache-Indexed Flushing
The tests for cache-indexed flushing are as follows:

■ Test that indexed flushing does not compare the tag (dcu_4_4_1.code).

■ Test with a new request to the same flushed line, which is dirty, and verify that

the DCU performs a copyback for it. The DCU stalls the new request until the

copyback and invalidation operations are complete (dcu_4_4_2.code).

10.8 Tests for Disabling of the Data Cache
The tests for disabling of the data cache are as follows:

■ Test with a store to a clean line to flush and disable the DCU. Next, send a load

request to the same address (dcu_4_5_2.code).

■ Test with stores set to 0 and 1 with the same index, followed by another store with

the same index to create a copyback from set 0. Next, disable the data cache and

check if the load_word instruction has copied back the correct data from set 0

(dcu_4_5_3.code).

10.9 Tests for Diagnostic Reads and Writes
The tests check the diagnostic read and write to a different index and word. Use

dcu_4_6_1.code for data cache data; use dcu_4_6_2.code for data cache tags.

10.10 Tests for Invalidation of the Cache
If the address is present in the data cache, the DCU invalidates it. However, if the

data cache is not enabled (PSR.DCE = 0), the DCU ignores the invalidation request.

The tests for cache invalidation are as follows:

■ Test cache invalidation with DCE= 0 and DCE= 1

■ dcu_4_7_1.code (PSR.DCE= 1)

■ dcu_4_7_2.code (PSR.DCE= 0)
102 picoJava-II Verification Guide • March 1999

■ Test with cache_invalidate both ways with the same tag; only one is valid

(dcu_4_7_3.code).

■ Test with cache_invalidate and nastore_word_index (dcu_4_9_1.code).

10.11 Tests for Dispatches of Load or Store
Instructions
Load or store instruction dispatches occur before the DCU completes the trapping

instruction. Afterward, the DCU cancels these dispatches.

Test with load or store instructions before and after an lmul instruction

(dcu_4_8_1.code).

10.12 Other Data Cache Tests
Other data cache tests include:

■ Test for loading from a bad memory location (dcu_4_10_1.code).

■ Test for cache_flush (dcu_flush.code).

■ Test for cache invalidating flushing (dcu_inv.code).

■ Test for cache_index_flush (dcu_ind_flush.code).

■ Test for zeroing of cache lines (dcu_zero.code).

■ Test for cache_index_flush that automatically adjusts to different cache size

configurations (dcu_auto_ind_flush).

■ Test for disabling the data cache; data previously written in the cache should still

be present (diagnostic_nocache.code).

■ Test for reading data from the cache that has been disabled. Read from both sets

(diagnostic_nocache_1.code).
Chapter 10 Verification of the Data Cache Unit (DCU) 103

104 picoJava-II Verification Guide • March 1999

CHAPTER 11

Verification of the
Stack Manager Unit (SMU)

The Stack Manager Unit (SMU) performs the following functions:

■ Stores and provides the necessary operands to the Integer Unit (IU)

■ Handles overflow and underflow conditions of the stack cache

■ Stalls the pipeline in an overflow or underflow condition

TABLE 11-1 describes the SMU tests, which cover all the basic and corner-case SMU

operations.

TABLE 11-1 Functional Tests for the SMU

Number Name Description

1 push_pop_1.code 256 pushes, 256 pops. This test verifies the normal

conditions of the Stack Manager. In filling up the

stack cache with 256 entries, the Dribble Manager fills

and spills entries according to the settings of the high

and low watermarks. The pipeline halts when the

stack cache is full; num_entries contains the

number of entries on the stack. SMU then writes data

from the stack cache back to the data cache.

2 push_pop_2.code Two pushes, one pop, repeat. This test performs in a

similar way as the previous test but fills up the stack

cache more slowly to allow the Dribble Manager time

to spill entries. It runs until the stack entries reach a

maximal number, and then it pops twice for every

push until the stack is empty.

3 push_pop_3.code 256 pops, 256 pushes. This test functions exactly the

same as the previous two tests but focuses on fill and

underflow conditions. It pops entries off an empty

stack and causes the Dribble Manager to fill new

entries.
105

4 push_pop_4.code Several pops, then move OPTOPsuddenly. This test

executes several pops until the dribbler starts to fill

entries. Then, it resets OPTOPto a higher value for a

sudden stall of the pipeline. Since the filling takes

place in the background, this sudden OPTOPmove

causes an unusual condition to occur.

5 push_pop_5.code Several pops, then move OPTOPsuddenly the other

way. A variant of the previous test, this test resets

OPTOPto a lower value, which causes an immediate

overflow as the dribbler fills cache entries.

6 push_pop_6.code 256 pushes with ncstore_byte mixed in, 256 pops

with more ncstore s. This test, similar to others,

performs a series of repeated pushes or pops, which

are intermixed with ncstore_byte operations to a

single address in the scratch area. The target is the

interaction between the SMU and the IU.

7 push_pop_7.code 256 dup s, then 256 store_byte /dup s. This test uses

dup instructions instead of push instructions to fill

up the stack cache faster and activates

dribble_stall .

8 push_pop_8.code This test is similar to the previous one but aims at the

case where a store and the dribbling out of an

address occur at the same time.

9 push_pop_9.code This test is similar to the previous one but aims at the

case where a store and the dribbling in of an address

occur at the same time.

10 read_write_1.code This test utilizes three read ports and two write ports

simultaneously. It performs operations to the stack

contents continuously to exercise these ports to verify

that they can function simultaneously. Simultaneous

read and write operations cannot occur to the same

location in memory at the same time. However, you

can force three reads and two writes by, for example,

performing an addition operation (two reads, one

write) while dribbling data in the background (one

read, one write).

TABLE 11-1 Functional Tests for the SMU (Continued)

Number Name Description
106 picoJava-II Verification Guide • March 1999

11 ovr_und_1.code This test generates an overflow or underflow

condition by moving OPTOPand SC_BOTTOM. It

causes a stack overflow by resetting the OPTOP
register to a lower value. An overflow occurs when

SC_BOTTOM> 60 + OPTOP; an underflow occurs when

SC_BOTTOM< = OPTOP+ 6. This test verifies that the

pipeline has been stalled, that every entry in the stack

cache is copied back to the data cache, and that

SC_BOTTOMis reset to OPTOP. The SMU releases the

pipe only after there are at least six entries in the

cache.

12 fib_1.code This test stresses the SMU by invoking a recursive

function to calculate Fibonacci numbers. Since the

recursive definition of the Fibonacci function

depends on the results from the previous

computation, this test verifies the maintenance of

stack frames.

13 fib_2.code This test is similar to the previous one. The only

difference is that it initializes local variables in each

stack frame.

14 invoke_return_1.code This test performs a number of nested invokes

followed by the same number of returns. It allocates a

number of stack frames (which you can specify)

through which it then returns values.

15 invoke_return_2.code This test is similar to the previous one. The only

difference is that it also allocates some local variables.

16 invoke_hold.jasm This test performs a microcode invoke operation after

the SMU has released the IU pipeline and executes

successive dup commands. The instruction that

follows an overflow is invokespecial_quick,
invokestatic_quick , invokevirtual_quick , or

invokeinterface_quick .

17 load_store_index.code This test verifies local variable store misses and

load_word bypasses in the same cycle.

TABLE 11-1 Functional Tests for the SMU (Continued)

Number Name Description
Chapter 11 Verification of the Stack Manager Unit (SMU) 107

108 picoJava-II Verification Guide • March 1999

CHAPTER 12

Traps and Interrupts

Exceptions in picoJava-II operations are caused by:

■ A subset of the Java virtual machine instructions which the picoJava-II core

emulates, using software

■ picoJava-specific exceptions, such as runtime exceptions and hardware errors

■ Hardware-generated interrupts

This chapter contains the following sections:

■ Exception Handlers on page 109

■ Traps and Exceptions on page 110

■ Interrupts on page 131

■ Corner Cases for Trapping Instructions on page 131

For information on trap types and trap priorities, see the picoJava-II Programmer’s
Reference Manual.

12.1 Exception Handlers
When the picoJava-II core takes a trap for any reason, it sets up a trap frame and

transfers control to the trap handler for that trap type.

The picoJava-II core verification environment provides reference implementations of

Java virtual machine bytecodes which cause an emulation trap. These trap handlers

are provided for the purpose of verification only.

The verification environment also provides reference implementations of handlers

for other traps (such as exceptions and interrupts) for the purpose of verification. By

default, these trap handlers simply abort the test that is running. However, they also

have a mode to count how many times an exception occurred during a test. This

mode is useful for testing exceptions. In this mode, the trap handlers, instead of
109

aborting the program, simply increment a counter in a predefined memory area and

return to the test program to continue execution. At the end of the test, the test

program checks these counters and compares the result with the expected number of

exceptions of each type.

The counters for each trap type are stored in memory from location 0xf000 onward,

one word for each trap type (including unused trap types). The address of the

counter for a particular trap type is (0xf000 + trap_type * 4).

To use the mode where the exception handlers count the number of times the

exception occurred (instead of aborting the program), specify the +expcount
option. This option stores the value 0xf0 to memory location 0xfff0. Exception

handlers check this location to decide whether to increment the counter and return

to the test, or abort it.

Note – When tests are run only on the simulator, this memory location must be

explicitly initialized when the mode in which exception handlers count the number

of exceptions is used.

To initialize this memory location, enter the following command:

% memPoke 0xfff0 0xf0

Note that cosimulation between the RTL and the simulator continues during the

time the trap is taken and while the exception handler is being executed. However,

the cosimulation environment cannot handle asynchronous exceptions, because it is

nondeterministic when the exception will be reported in the RTL. This makes it

difficult to compare state with the simulator after every instruction. For tests that

exercise such exceptions, you can disable cosimulation and instead depend on self-

checking tests running on the RTL standalone.

12.2 Traps and Exceptions
Exceptions fall into a number of categories, as defined in the following sections,

which also list their test cases.

12.2.1 Power-On Reset (POR)

Triggered by an external reset request, a power-on reset (POR) causes a transfer of

control to address 0. When a POR is active, the picoJava-II core ignores all other

resets and traps.

You should test at the beginning of all test cases.
110 picoJava-II Verification Guide • March 1999

12.2.2 Asynchronous Error

In case of a store error or an SMU error, the picoJava-II core goes into the error state

and signals itself to take an asynchronous_error trap at an offset of 0x8 from the

TBA (Trap Base Address).

The test cases are described in TABLE 12-1.

A table in Chapter 8, “Powerdown, Clock, Reset, and Scan Unit, (PCSU),” in the

picoJava-II Microarchitecture Guide lists the machine states for asynchronous errors.

This trap disturbs the minimum state.

TABLE 12-1 Tests for Asynchronous Errors

Test Case Description

exp_4_1_1_2.code Tests with stores to an erroneous cacheable memory

location. An asynchronous error occurs.

exp_4_1_1_3.code Tests with a write_optop instruction to an erroneous

cacheable memory location. An asynchronous error occurs.

exp_4_1_1_4.code Tests with a store to a local variable that is an erroneous

cacheable memory location. An asynchronous error occurs.

exp_4_1_1_7.code Tests with a store to an erroneous cacheable memory

location when PSR.AEM= 1. The picoJava-II core should

take no exceptions.

exp_4_1_1_8.code Tests with a writeback to an erroneous cacheable memory

location. An asynchronous error occurs.

exp_4_1_1_9.code Tests with a write_optop instruction to an erroneous

noncacheable location. An asynchronous error occurs.

exp_4_1_1_10.code Tests with stores to an erroneous noncacheable location. An

asynchronous error occurs.

exp_4_1_1_11.code Tests with a store to a local variable that is an erroneous

noncacheable location. An asynchronous error occurs.

exp_4_1_1_12.code Tests with a store to an erroneous noncacheable location

when PSR.AEM= 1. The picoJava-II core should take no

exceptions.

async_fold Tests arrival of asynchronous error during execution of

folded group.
Chapter 12 Traps and Interrupts 111

12.2.3 Data Access Memory Errors

data_access_mem_error is an error exception that occurs on a data load from

memory.

The test cases are described in TABLE 12-2.

12.2.4 Instruction Access Memory Errors

instruction_access_mem_error is an error exception that occurs on an

instruction access from memory or I/O.

The test cases are described in TABLE 12-3.

12.2.5 Privileged Instructions

privileged_instruction is an error that results from the execution of a

privileged instruction when PSR.SU is equal to 0.

The test case is described in TABLE 12-4.

TABLE 12-2 Tests for Data Access Memory Errors

Test Case Description

exp_4_1_1_1.code Tests with loads to an erroneous memory location.

exp_4_1_1_5.code Tests with a putstatic_quick instruction to an erroneous

memory location. A data access memory error exception

occurs.

exp_4_1_1_6.code Tests with a tableswitch instruction with some of its

opcodes in erroneous locations. A data access memory error

exception occurs.

TABLE 12-3 Tests for Instruction Access Memory Errors

Test Case Description

exp_4_1_2_1.code Tests with write_pc to an erroneous memory location.

exp_4_1_2_2.code Tests with write_pc to an erroneous I/O location.

exp_4_1_2_3.code Tests with write_pc at the border of good memory and bad

memory and verifies that an instruction access memory

error exception occurs afterward in bad memory.

exp_4_1_2_4.code Tests with a tableswitch instruction in an erroneous

location.
112 picoJava-II Verification Guide • March 1999

12.2.6 Illegal Instructions

illegal_instruction is an error that results from the execution of an instruction

with an unimplemented or reserved opcode.

The test cases are described in TABLE 12-5.

12.2.7 breakpoint1

breakpoint1 is a trap that occurs when either an instruction fetch memory address

or a load or store data memory address matches the address in the Breakpoint1
address register.

TABLE 12-4 Test for Privileged Instructions

Test Case Description

exp_4_1_3_1.code Tests with PSR.SU = 0 and executes all 42 privileged

instructions to verify that the priv_reset instruction

causes a privileged instruction exception instead of a reset

exception.

TABLE 12-5 Tests for Illegal Instructions

Test Case Description

exp_4_1_4_1.code Tests with all unimplemented and reserved opcodes (two

bytes opcode and PSR.SU = 1).

exp_4_1_4_2.code Tests with all unimplemented and reserved opcodes (two

bytes opcode and PSR.SU = 0).
Chapter 12 Traps and Interrupts 113

The test cases are described in TABLE 12-6.

TABLE 12-6 Tests for breakpoint1

Test Case Description

exp_4_1_5_1.code
(PSR.SU = 1, SUBRK1 = 0)

Test with a load data memory

address that matches the

Breakpoint1 address register.
exp_4_1_5_2.code
(PSR.SU = 1, SUBRK1 = 1)

exp_4_1_5_3.code
(PSR.SU = 0, SUBRK1 = 0, BRKM1 = b'1111111)

exp_4_1_5_4.code
(PSR.SU = 0, SUBRK1 = 0, BRKM1 = b'1111110)

exp_4_1_5_5.code
(PSR.SU = 0, SUBRK1 = 0, BRKM1 = b'1111100)

exp_4_1_5_6.code
(PSR.SU = 0, SUBRK1 = 0, BRKM1 = b'1111000)

exp_4_1_5_7.code
(PSR.SU = 0, SUBRK1 = 0, BRKM1 = b'1110000)

exp_4_1_5_8.code
(PSR.SU = 0, SUBRK1 = 0, BRKM1 = b'1100000)

exp_4_1_5_9.code
(PSR.SU = 0, SUBRK1 = 0, BRKM1 = b'1000000)

exp_4_1_5_10.code
(PSR.SU = 0, SUBRK1 = 1, BRKM1 = b'1111111)

exp_4_1_5_11.code
(PSR.SU = 0, SUBRK1 = 1, BRKM1 = b'1111110)

exp_4_1_5_12.code
(PSR.SU = 0, SUBRK1 = 1, BRKM1 = b'1111100)

exp_4_1_5_13.code
(PSR.SU = 0, SUBRK1 = 1, BRKM1 = b'1111000)

exp_4_1_5_14.code
(PSR.SU = 0, SUBRK1 = 1, BRKM1 = b'1110000)

exp_4_1_5_15.code
(PSR.SU = 0, SUBRK1 = 1, BRKM1 = b'1100000)

exp_4_1_5_16.code
(PSR.SU = 0, SUBRK1 = 1, BRKM1 = b'1000000)
114 picoJava-II Verification Guide • March 1999

exp_4_1_5_17.code
(PSR.SU = 1, SUBRK1 = 0)

Test with a store data memory

address that matches the

Breakpoint1 address register.
exp_4_1_5_18.code
(PSR.SU = 1, SUBRK1 = 1)

exp_4_1_5_19.code
(PSR.SU = 0, SUBRK1 = 0, BRKM1 = b'1111111)

exp_4_1_5_20.code
(PSR.SU = 0, SUBRK1 = 0, BRKM1 = b'1111110)

exp_4_1_5_21.code
(PSR.SU = 0, SUBRK1 = 0, BRKM1 = b'1111100)

exp_4_1_5_22.code
(PSR.SU = 0, SUBRK1 = 0, BRKM1 = b'1111000)

exp_4_1_5_23.code
(PSR.SU = 0, SUBRK1 = 0, BRKM1 = b'1110000)

exp_4_1_5_24.code
(PSR.SU = 0, SUBRK1 = 0, BRKM1 = b'1100000)

exp_4_1_5_25.code
(PSR.SU = 0, SUBRK1 = 0, BRKM1 = b'1000100)

exp_4_1_5_26.code
(PSR.SU = 0, SUBRK1 = 0, BRKM1 = b'1111111)

exp_4_1_5_27.code
(PSR.SU = 0, SUBRK1 = 1, BRKM1 = b'1111110)

exp_4_1_5_28.code
(PSR.SU = 0, SUBRK1 = 1, BRKM1 = b'1111100)

exp_4_1_5_29.code
(PSR.SU = 0, SUBRK1 = 1, BRKM1 = b'1111000)

exp_4_1_5_30.code
(PSR.SU = 0, SUBRK1 = 1, BRKM1 = b'1110000)

exp_4_1_5_31.code
(PSR.SU = 0, SUBRK1 = 1, BRKM1 = b'1100000)

exp_4_1_5_32.code
(PSR.SU = 0, SUBRK1 = 1, BRKM1 = b'1000000)

exp_4_1_5_33.code Tests with a fetching address that

matches the Breakpoint1 address

register.

exp_4_1_5_34.code Tests with a fetching address that

matches the Breakpoint1
address register, with the folding

bit on.

TABLE 12-6 Tests for breakpoint1 (Continued)

Test Case Description
Chapter 12 Traps and Interrupts 115

12.2.8 breakpoint2

breakpoint2 is a trap that occurs when either an instruction fetch memory address

or load or store data memory address matches the address in the Breakpoint2
address register.

exp_4_1_5_35.code Tests the halt mode with a

load_byte instruction that causes

a data breakpoint1 exception.

exp_4_1_5_36.code Tests the halt mode with a

store_byte instruction that

causes a data breakpoint1
exception.

exp_4_1_5_37.code Tests the halt mode with an

instruction breakpoint1
exception.

exp_4_1_5_38.code Tests with a zero_line
instruction that causes a data

breakpoint1 exception with

SRCBRK1= 0.

exp_4_1_5_39.code Tests with a cache_invalidate
instruction that causes a data

breakpoint1 exception with

SRCBRK1= 0.

exp_4_1_5_40.code Tests with a zero_line
instruction that causes a data

breakpoint1 exception with

SRCBRK1= 1.

exp_4_1_5_41.code Tests with a cache_invalidate
instruction that causes a data

breakpoint1 exception with

SRCBRK1= 1.

data_brk_1
data_brk_2
data_brk_3
data_brk_4

Test data breakpoints during stack

cache miss for data load.

data_brk_halt_1
data_brk_halt_2
data_brk_halt_3
data_brk_halt_4

Test data breakpoints in halt

mode.

TABLE 12-6 Tests for breakpoint1 (Continued)

Test Case Description
116 picoJava-II Verification Guide • March 1999

The test cases are described in TABLE 12-7.

TABLE 12-7 Tests for breakpoint2

Test Case Description

exp_4_1_6_1.code
(PSR.SU = 1, SUBRK1 = 0)

Test with a load data memory

address that matches the

Breakpoint2 address register.
exp_4_1_6_2.code
(PSR.SU = 1, SUBRK1 = 1)

exp_4_1_6_3.code
(PSR.SU = 0, SUBRK1 = 0, BRKM1 = b'1111111)

exp_4_1_6_4.code
(PSR.SU = 0, SUBRK1 = 0, BRKM1 = b'1111110)

exp_4_1_6_5.code
(PSR.SU = 0, SUBRK1 = 0, BRKM1 = b'1111100)

exp_4_1_6_6.code
(PSR.SU = 0, SUBRK1 = 0, BRKM1 = b'1111000)

exp_4_1_6_7.code
(PSR.SU = 0, SUBRK1 = 0, BRKM1 = b'1110000)

exp_4_1_6_8.code
(PSR.SU = 0, SUBRK1 = 0, BRKM1 = b'1100000)

exp_4_1_6_9.code
(PSR.SU = 0, SUBRK1 = 0, BRKM1 = b'1000000)

exp_4_1_6_10.code
(PSR.SU = 0, SUBRK1 = 1, BRKM1 = b'1111111)

exp_4_1_6_11.code
(PSR.SU = 0, SUBRK1 = 1, BRKM1 = b'1111110)

exp_4_1_6_12.code
(PSR.SU = 0, SUBRK1 = 1, BRKM1 = b'1111100)

exp_4_1_6_13.code
(PSR.SU = 0, SUBRK1 = 1, BRKM1 = b'1111000)

exp_4_1_6_14.code
(PSR.SU = 0, SUBRK1 = 1, BRKM1 = b'1110000)

exp_4_1_6_15.code
(PSR.SU = 0, SUBRK1 = 1, BRKM1 = b'1100000)

exp_4_1_6_16.code
(PSR.SU = 0, SUBRK1 = 1, BRKM1 = b'1000000)
Chapter 12 Traps and Interrupts 117

exp_4_1_6_17.code
(PSR.SU = 1, SUBRK1 = 0)

Test with a store data memory

address that matches the

Breakpoint2 address register.
exp_4_1_6_18.code
(PSR.SU = 1, SUBRK1 = 1)

exp_4_1_6_19.code
(PSR.SU = 0, SUBRK1 = 0, BRKM1 = b'1111111)

exp_4_1_6_20.code
(PSR.SU = 0, SUBRK1 = 0, BRKM1 = b'1111110)

exp_4_1_6_21.code
(PSR.SU = 0, SUBRK1 = 0, BRKM1 = b'1111100)

exp_4_1_6_22.code
(PSR.SU = 0, SUBRK1 = 0, BRKM1 = b'1111000)

exp_4_1_6_23.code
(PSR.SU = 0, SUBRK1 = 0, BRKM1 = b'1110000)

exp_4_1_6_24.code
(PSR.SU = 0, SUBRK1 = 0, BRKM1 = b'1100000)

exp_4_1_6_25.code
(PSR.SU = 0, SUBRK1 = 0, BRKM1 = b'1000100)

exp_4_1_6_26.code
(PSR.SU = 0, SUBRK1 = 0, BRKM1 = b'1111111)

exp_4_1_6_27.code
(PSR.SU = 0, SUBRK1 = 1, BRKM1 = b'1111110)

exp_4_1_6_28.code
(PSR.SU = 0, SUBRK1 = 1, BRKM1 = b'1111100)

exp_4_1_6_29.code
(PSR.SU = 0, SUBRK1 = 1, BRKM1 = b'1111000)

exp_4_1_6_30.code
(PSR.SU = 0, SUBRK1 = 1, BRKM1 = b'1110000)

exp_4_1_6_31.code
(PSR.SU = 0, SUBRK1 = 1, BRKM1 = b'1100000)

exp_4_1_6_32.code
(PSR.SU = 0, SUBRK1 = 1, BRKM1 = b'1000000)

exp_4_1_6_33.code Tests with a fetching address that

matches the Breakpoint2
address register.

exp_4_1_6_34.code Tests with a fetching address that

matches the Breakpoint2
address register, with the folding

bit on.

TABLE 12-7 Tests for breakpoint2 (Continued)

Test Case Description
118 picoJava-II Verification Guide • March 1999

12.2.9 Misalignment of Memory Addresses

mem_address_not_aligned is an error that occurs when a load or store

instruction generates an address with which it is not properly aligned.

The test cases are described in TABLE 12-8.

exp_4_1_6_35.code Tests the halt mode with a

load_byte instruction that causes

a data breakpoint2 exception.

exp_4_1_6_36.code Tests the halt mode with a

store_byte instruction that

causes a data breakpoint2
exception.

exp_4_1_6_37.code Tests the halt mode with an

instruction breakpoint2
exception.

exp_4_1_6_38.code Tests with a zero_line
instruction that causes a data

breakpoint2 exception with

SRCBRK2= 0.

exp_4_1_6_39.code Tests with a cache_invalidate
instruction that causes a data

breakpoint2 exception with

SRCBRK2 = 0.

exp_4_1_6_40.code Tests with a zero_line
instruction that causes a data

breakpoint2 exception with

SRCBRK2= 1.

exp_4_1_6_41.code Tests with a cache_invalidate
instruction that causes a data

breakpoint2 exception with

SRCBRK2= 1.

TABLE 12-7 Tests for breakpoint2 (Continued)

Test Case Description
Chapter 12 Traps and Interrupts 119

12.2.10 Data Access I/O Errors

data_access_io_error is an error exception that occurs on a load data access

from or to the I/O space.

Test with a load from an erroneous I/O (exp_4_1_8_1.code).

12.2.11 OPLIM Traps

An OPLIM trap occurs when an instruction causes OPTOPto be smaller than OPLIM.

The trap handler must either grow the current stack area or allocate a new “chunk.”

When it returns from the trap, the IU must reexecute the trapped instruction.

The test cases are described in TABLE 12-9.

TABLE 12-8 Tests for Memory Address Misalignment

Test Case Description

exp_4_1_7_1.code (cacheable loads and load index

instructions)

Test all load and store

instructions with misaligned

addresses.
exp_4_1_7_2.code (cacheable stores and store index

instructions)

exp_4_1_7_3.code (noncacheable stores)

exp_4_1_7_4.code (noncacheable loads)

TABLE 12-9 Tests for OPLIM Traps

Test Case Description

exp_4_1_9_1.code Tests with write_optop .

exp_4_1_9_2.code Tests with write_oplim .

exp_4_1_9_3.code Tests priv_update_optop without an OPLIM trap during

an atomic update, but with a new OPTOPand a new OPLIM
that is greater than the old OPLIM.

exp_4_1_9_4.code Tests priv_update_optop without an OPLIM trap during

an atomic update, but with a new OPTOPand a new OPLIM
that is smaller than the old OPLIM.

exp_4_1_9_5.code Tests priv_update_optop with an OPLIM trap during an

update.

exp_4_1_9_6.jasm Tests invokenonvirtual_quick , which causes an OPLIM
trap.
120 picoJava-II Verification Guide • March 1999

12.2.12 Soft Traps

Test with the soft_trap instruction (exp_4_1_10_1.code).

12.2.13 ldiv

Test with ldiv in the IU.

12.2.14 lmul

Test with lmul in the IU.

12.2.15 lrem

Test with lrem in the IU.

12.2.16 Runtime Arithmetic

runtime_ArithmeticException is an exceptional arithmetic situation, such as an

integer division or remainder operation with zero.

Test with idiv and irem instructions (exp_4_1_14_1.code):

■ To create this exception

■ To take the following exceptions: tt = 0x6d, 0x71, which are

runtime_arithmetic exceptions

12.2.17 Runtime Null Pointers

runtime_NullPtrException is an exception that occurs when a null reference

instead of an object reference is used.

The test cases are described in TABLE 12-10.
Chapter 12 Traps and Interrupts 121

12.2.18 Emulation of Zero Lines

The zero line emulation trap occurs when the zero_line instruction is executed

when the data cache is off.

The test cases are described in TABLE 12-11.

12.2.19 Emulation of FP Instructions

If either the FPE bit in the PSRor the FPP bit in the HCRis off, the Instruction Cache

Unit (ICU) traps all floating-point (FP) instructions, which are:

fadd , dadd , fsub , dsub , fmul , dmul , fdiv , dddiv , frem , drem , i2f , i2l , l2f ,

l2d , f2i , f2l , d2i , d2l , f2d , d2f , fcmpg , fcmpl , dcmpg, and dcmpl

The test cases are described in TABLE 12-12.

TABLE 12-10 Tests for Runtime Null Pointers

Test Case Description

exp_4_1_15_1.code Tests with all aload instructions (a, b, c, d, i, l, f and s) to

create runtime_NullPtrException .

exp_4_1_15_2.code Tests with all astore instructions (a, b, c, d, i, l, f and s) to

create runtime_NullPtrException .

TABLE 12-11 Tests for Zero Line Emulation

Test Case Description

exp_4_1_16_1.code Test a zero_line instruction with PSR.DCE= 0.

exp_4_1_16_2.code Test a zero_line instruction with a noncacheable address

and PSR.DCE= 1.

TABLE 12-12 Tests for Emulation of FP Instructions

Test Case Description

exp_4_1_17_1.code Tests all FP instructions with PSR.FPE = 0 and HCR.FPP= 1.

exp_4_1_17_2.code Tests all FP instructions with PSR.FPE = 1 and HCR.FPP= 1.

exp_4_1_17_4.code Tests a drem trap with PSR.FPE/DRT = 1 and HCR.FPP= 1.
122 picoJava-II Verification Guide • March 1999

Note – FPU emulation handlers increment the trap counters and move on to the

instructions that follow. No actual floating-point operations take place.

12.2.20 Breakpoint Handlers

The breakpoint handler exception occurs when the program counter (PC) register

values matches the breakpoint address.

The test case is exp_4_1_18_1.code .

12.2.21 Unimplemented Instructions

Test all instructions that have not been implemented.

The test cases are described in TABLE 12-13.

12.2.22 Memory Protection Fault

The memory protection fault is a synchronous trap that occurs when the picoJava-II

core accesses outside of the address ranges of the USERRANGE1and USERRANGE2
registers.

Note – The picoJava-I core can take asynchronous traps when it accesses outside of

the address ranges of the URSERRANGE1and USERRANGE2registers.

TABLE 12-13 Tests for Unimplemented Instructions

Test Case Description

exp_4_1_19_1.code Tests with PSR.SU = 1.

exp_4_1_19_2.code Tests with PSR.SU = 0.
Chapter 12 Traps and Interrupts 123

The test cases are described in TABLE 12-14.

12.2.23 Out-of-Bounds Runtime Index

runtime_IndexOutOfBoundsException is an out-of-range exception that is

either an index or a subrange. It is specified by two indexes or by an index and a

length.

The test cases are described in TABLE 12-15.

TABLE 12-14 Tests for Memory Protection Faults

Test Case Description

exp_4_1_20_1.code (load),

exp_4_1_20_2.code (store)

Test all load and store instructions with PSR.ACE= 1

and PSR.CAC= 0 (outside USERRANGE1and

USERRANGE2).

exp_4_1_20_3.code (load),

exp_4_1_20_4.code (store)

Test all load and store instructions with PSR.ACE= 1

and PSR.CAC= 0 (outside USERRANGE1only).

exp_4_1_20_5.code (load),

exp_4_1_20_6.code (store)

Test all load and store instructions with PSR.ACE= 1

and PSR.CAC= 0 (outside USERRANGE2only).

exp_4_1_20_7.code
exp_4_1_20_8.code

Test all load and store instructions with PSR.ACE= 1

and PSR.CAC= 1 (outside USERRANGE1and

USERRANGE2).

exp_4_1_20_9.code
exp_4_1_20_10.code

Test all load and store instructions with PSR.ACE= 1

and PSR.CAC= 1 (outside USERRANGE1only).

exp_4_1_20_11.code
exp_4_1_20_12.code

Test all load and store instructions with PSR.ACE= 1

and PSR.CAC= 1 (outside USERRANGE2only).

exp_4_1_20_13.code Tests with a putstatic_quick access out of

USERRANGEs.

exp_4_1_20_14.code Tests with a write_optop access that is out of

USERRANGEs.

exp_4_1_20_15.code Tests with a store_word_index access that is out of

USERRANGEs.

exp_4_1_20_16.code Tests with a zero_line access that is out of

USERRANGEs.

exp_4_1_20_17.code Tests with a cache_invalidate access that is out of

USERRANGEs.
124 picoJava-II Verification Guide • March 1999

12.2.24 Lock Count Overflow Traps

The lock count overflow trap occurs if the LOCKCOUNTregister overflows or

underflows when incremented or decremented while entering or exiting a monitor.

The test cases are described in TABLE 12-16.

12.2.25 Lock Enter Miss Traps

The lock enter miss trap occurs if the monitor that is entering does not exist in either

of the LOCKADDRregisters (Lockaddr0 and Lockaddr1).

The test case is exp_4_1_23_1.code .

12.2.26 Lock Exit Miss Traps

The lock exit miss trap occurs if the monitor that is exiting does not exist in either of

the LOCKADDRregisters (Lockaddr0 and Lockaddr1).

The test case is exp_4_1_24_1.code .

TABLE 12-15 Tests for Out-of-Bounds Runtime Index Exceptions

Test Case Description

exp_4_1_21_1.jasm Tests with all aload instructions (a, b, c, d, i, l, f, and s) to

create runtime_IndexOutOfBoundsException .

exp_4_1_21_2.jasm Tests with all astore instructions (a, b, c, d, i, l, f, and s) to

create runtime_IndexOutOfBoundsException .

TABLE 12-16 Tests for Lock Count Overflow Traps

Test Case Description

exp_4_1_22_1.code Tests LockCount /addr0 overflow and LockCount /addr1
miss.

exp_4_1_22_2.code Tests LockCount /addr1 overflow and LockCount /addr0
miss.

exp_4_1_22_3.code Tests LockCount /addr0 underflow and LockCount /
addr1 miss.

exp_4_1_22_4.code Tests LockCount /addr1 underflow and LockCount /
addr0 miss.
Chapter 12 Traps and Interrupts 125

12.2.27 Lock Release Traps

The lock release trap occurs if LOCKCOUNTequals 0 and the corresponding

LOCKWANTbit is set.

The test cases are described in TABLE 12-17.

12.2.28 Garbage Collection Notify Traps

The gc_notify trap occurs when a copy is made of object references that the

garbage collector has not yet processed. For details, see the chapter on garbage

collection in the picoJava-II Programmer’s Reference Manual.

The test cases are described in TABLE 12-18.

TABLE 12-17 Tests for Lock Release Traps

Test Case Description

exp_4_1_25_1.code Tests Lockaddr0 and Lockcount0 .

exp_4_1_25_2.code Tests Lockaddr1 and Lockcount1 .

exp_4_1_25_3.code Tests Lockaddr0 , Lockaddr1 , Lockcount0 , and

Lockcount1 .

TABLE 12-18 Tests for Garbage Collection Notify Traps

Test Case Description

exp_4_1_26_1.code Tests aputstatic_quick and aputfield_quick with

GCE= 0.

exp_4_1_26_2.code Tests aputstatic_quick and aputfield_quick with

GCE= 1.
126 picoJava-II Verification Guide • March 1999

12.2.29 Trap Priority Tests for Two Exceptions

TABLE 12-19 through TABLE 12-27 describe the trap priority tests for two exceptions.

TABLE 12-19 Tests for Memory Protection with Other Exceptions

Test Case Description

exp_5_5_1_1.code Tests memory protection with a data access memory error.

exp_5_5_1_2.code Tests memory protection with breakpoint1 .

exp_5_5_1_3.code Tests memory protection with breakpoint2 .

exp_5_5_1_4.code Tests memory protection with a misaligned error.

exp_5_5_1_5.code Tests memory protection with data_access_io .

exp_5_5_1_6.code Tests memory protection with OPLIM.

TABLE 12-20 Tests for breakpoint1 with Other Exceptions

Test Case Description

exp_5_5_2_1.code Tests breakpoint1 with breakpoint2 .

exp_5_5_2_2.code Tests breakpoint1 with instruction_access_error .

Needs a special breakpoint1.code .

exp_5_5_2_3.code Tests breakpoint1 with illegal_instruction .

exp_5_5_2_4.code Tests breakpoint1 with privileged_instruction .

exp_5_5_2_5.code Tests breakpoint1 with OPLIM.

exp_5_5_2_6.code Tests breakpoint1 with mem_address_not_aligned .

exp_5_5_2_7.code Tests breakpoint1 with data_access_mem_error .

exp_5_5_2_8.code Tests breakpoint1 with data_access_io_error .

exp_5_5_2_9.code Tests breakpoint1 with fpu-etrap .

exp_5_5_2_10.code Tests breakpoint1 with unimplemented_instr_0xed .

exp_5_5_2_11.code Tests breakpoint1 with ZeroLineEmulation

exp_5_5_2_12.code Tests breakpoint1 with runtime_Arithmetic .

exp_5_5_2_13.code Tests breakpoint1 with LockCountOverflowTrap .

exp_5_5_2_14.code Tests breakpoint1 with gc_notify .
Chapter 12 Traps and Interrupts 127

TABLE 12-21 Tests for breakpoint2 with Other Exceptions

Test Case Description

exp_5_5_3_1.code Tests breakpoint2 with breakpoint1 .

exp_5_5_3_3.code Tests breakpoint2 with illegal_instruction .

exp_5_5_3_4.code Tests breakpoint2 with privileged_instruction .

exp_5_5_3_5.code Tests breakpoint2 with OPLIM.

exp_5_5_3_6.code Tests breakpoint2 with mem_address_not_aligned .

exp_5_5_3_7.code Tests breakpoint2 with data_access_mem_error .

exp_5_5_3_8.code Tests breakpoint2 with data_access_io_error .

exp_5_5_3_9.code Tests breakpoint2 with fpu-etrap .

exp_5_5_3_10.code Tests breakpoint2 with softtrap , ldiv , and

unimplemented_instr_0xed .

exp_5_5_3_11.code Tests breakpoint2 with ZeroLineEmulation .

exp_5_5_3_12.code Tests breakpoint2 with runtime_Arithmetic .

exp_5_5_3_13.code Tests breakpoint2 with LockCountOverflowTrap .

exp_5_5_3_14.code Tests breakpoint2 with gc_notify .

TABLE 12-22 Tests for Instruction Access Errors with Other Exceptions

Test Case Description

exp_5_5_4_1.code Tests an instruction access error with an illegal instruction.

exp_5_5_4_2.code Tests an instruction access error with a privileged

instruction.

exp_5_5_4_3.code Tests instruction access error with OPLIM.

TABLE 12-23 Tests for OPLIM with Other Exceptions

Test Case Description

exp_5_5_5_1.code Tests illegal instruction and OPLIM trap.

exp_5_5_7_1.code Tests OPLIM with mem_address_not_aligned .

exp_5_5_7_2.code Tests OPLIM with data_access_mem_error .

exp_5_5_7_3.code Tests OPLIM with data_access_io_error .

exp_5_5_7_4.code Tests OPLIM with soft_trap .
128 picoJava-II Verification Guide • March 1999

exp_5_5_7_5.code Tests OPLIM with runtime_NullptrException .

exp_5_5_7_6.code Tests OPLIM with LockEnterMissTrap .

exp_5_5_7_7.code Tests OPLIM with gc_notify .

TABLE 12-24 Tests for Mem_address_not_aligned with Other Exceptions

Test Case Description

exp_5_5_8_1.code Tests mem_address_not_aligned with

data_access_mem_error .

exp_5_5_8_2.code Tests mem_address_not_aligned with

data_access_io_error .

TABLE 12-25 Test for Data Access Memory Error with Other Exceptions

Test Case Description

exp_5_5_9_1.code Tests access memory error with ZeroLineEmulation .

TABLE 12-26 Test for Data Access I/O Error with Other Exceptions

Test Case Description

exp_5_5_10_1.code Tests access I/O error with ZeroLineEmulation .

TABLE 12-27 Test for NullPtr and IndexOutOfBnd

Test Case Description

exp_5_5_11_1.code Verifies that in all array loads, Arrayref is null and the

index is negative.

exp_5_5_11_2.code Verifies that in all array stores, Arrayref is null and the

index is negative.

TABLE 12-23 Tests for OPLIM with Other Exceptions

Test Case Description
Chapter 12 Traps and Interrupts 129

12.2.30 Trap Priority Tests with Three Exceptions

TABLE 12-28, TABLE 12-29, and TABLE 12-30 describe the trap priority tests for three

exceptions.

TABLE 12-28 Tests for Memory Protection Errors with Other Exceptions

Test Case Description

exp_5_6_1_1.code Tests a memory protection error with breakpoint1 and

breakpoint2 .

exp_5_6_1_2.code Tests a memory protection error with breakpoint1 and

OPLIM.

exp_5_6_1_3.code Tests a memory protection error with breakpoint1 and

mem_address_not_aligned .

exp_5_6_1_4.code Tests a memory protection error with breakpoint1 and

data_access_mem .

exp_5_6_1_5.code Tests a memory protection error with breakpoint1 and

data_access_io .

exp_5_6_1_6.code Tests a memory protection error with OPLIM and

mem_address_not_aligned .

exp_5_6_1_7.code Tests a memory protection error with OPLIM and

data_access_mem .

exp_5_6_1_8.code Tests a memory protection error with OPLIM and

data_access_io .

exp_5_6_1_9.code Tests a memory protection error with

mem_address_not_aligned and data_access_mem .

exp_5_6_1_10.code Tests a memory protection error with

mem_address_not_aligned and data_access_io .

TABLE 12-29 Tests for breakpoint1 with Other Exceptions

Test Case Description

exp_5_6_2_1.code Tests breakpoint1 with OPLIM and

mem_address_not_aligned .

exp_5_6_2_2.code Tests breakpoint1 with OPLIM and data_access_mem .

exp_5_6_2_3.code Tests breakpoint1 with OPLIM and data_access_io .
130 picoJava-II Verification Guide • March 1999

12.3 Interrupts
We test nonmaskable interrupts (NMI) and maskable interrupts (IRL) at random.

12.4 Corner Cases for Trapping Instructions
TABLE 12-31 through TABLE 12-44 describe the corner cases for trapping instructions.

TABLE 12-30 Tests for OPLIM with Other Exceptions

Test Case Description

exp_5_6_3_1.code Tests with OPLIM, mem_address_not_aligned , and

data_access_mem .

exp_5_6_3_2.code Tests with OPLIM, mem_address_not_aligned , and

data_access_io .

TABLE 12-31 Getstatic and Putstatic

Test Case Description

trap_6_1_1.java (int)

trap_6_1_2.java (float)

trap_6_1_3.java (double)

trap_6_1_4.java (long)

Test the access of inherited static variables.

trap_6_1_5.java (int)

trap_6_1_6.java (float)

trap_6_1_7.java (double)

trap_6_1_8.java (long)

Test the access and shadowing of static variables.

trap_6_1_5.java (int)

trap_6_1_6.java (float)

trap_6_1_7.java (double)

trap_6_1_8.java (long)

Test the access of shadowed static variables

(super.aStaticVar).

trap_6_1_3.java (double)

trap_6_1_4.java (long)

Access long and double.
Chapter 12 Traps and Interrupts 131

TABLE 12-32 Getfield and Putfield

Test Case Description

trap_6_2_1.java (int)

trap_6_2_2.java (float)

trap_6_2_3.java (double)

trap_6_2_4.java (long)

Test the access of inherited instance variables.

trap_6_2_5.java (int)

trap_6_2_6.java (float)

trap_6_2_7.java (double)

trap_6_2_8.java (long)

Test the access and shadowing of instance

variables.

trap_6_2_5. java (int and static))

trap_6_2_6.java (float and static)

trap_6_2_7.java (double and static)

trap_6_2_8.java (long and static)

trap_6_2_13.java (int and double,

nonstatic)

Test the access of shadowed static variables

(super.anInstanceVar).

trap_6_2_7.java (double)

trap_6_2_8.java (long)

Test the access of long and double.

trap_6_2_9.java (int)

trap_6_2_10.java (float)

trap_6_2_11.java (double)

trap_6_2_12.java (long)

Test the access of var instances with index values

that exceed 255 (getfield_quick_w and

putfield_quick_w).

trap_6_2_9.java (int)

trap_6_2_10.java (float)

trap_6_2_11.java (double)

trap_6_2_12.java (long)

Test the access of instance variables whose keys are

the same.

TABLE 12-33 Invokestatic

Test Case Description

trap_6_3_1.java
trap_6_3_2.java
trap_6_3_3.java
trap_6_3_4.java
trap_6_3_5.java

Test the access of inherited static methods.

trap_6_3_6.java Tests the access of inherited static methods with

the same key.

trap_6_3_7.java (int)

trap_6_3_8.java (double)

Test the access of the overriding static method.

trap_6_3_9.java (int)

trap_6_3_10.java (double)

Test the access of the overridden static method.
132 picoJava-II Verification Guide • March 1999

trap_6_3_1.java Tests the access of the overloaded static method

with the same method name, but a different

number of arguments.

trap_6_3_2.java Tests the access of the overloadedstatic method

with the same method name, but different types of

arguments (int and double).

trap_6_3_3.java Tests the access of the overloaded static method

with the same method name, but different types of

arguments (int and float).

trap_6_3_4.java Tests the access of the overloaded static method

with the same method name, but different types of

arguments (long and double).

trap_6_3_5.java Tests the access of the overloaded static method

with the same method name, but different types of

arguments (int and double).

trap_6_3_11.java Tests the access of the overloaded static method

with the same method name, but a different order

of arguments (int and double).

trap_6_3_12.java Tests the access of superclass methods.

TABLE 12-34 Invokevirtual

Test Case Description

trap_6_4_1.java Tests the access of inherited instance methods with

the same method name, but a different number of

arguments.

trap_6_4_2.java Tests the access of inherited instance methods with

the same method name, but different types of

arguments (int and double).

trap_6_4_3.java Tests the access of inherited instance methods with

the same method name, but different types of

arguments (int and float).

trap_6_4_4.java Tests the access of inherited instance methods with

the same method name, but different types of

arguments (long and double).

trap_6_4_5.java Tests the access of inherited instance methods with

the same method name, but different types of

arguments (int and float).

TABLE 12-33 Invokestatic (Continued)

Test Case Description
Chapter 12 Traps and Interrupts 133

trap_6_4_6.java Tests the access of inherited instance methods with

the same method name, but different types of

returns (int and double).

trap_6_4_7.java (int)

trap_6_4_8.java (double)

trap_6_4_13.java (casts a subclass

to its superclass and calls the

overriding method)

Test the access of the overriding instance method.

trap_6_3_9.java (int)

trap_6_3_10.java (double)

Test the access of the overridden instance method.

trap_6_4_1.java Tests the access of the overloaded instance method

with the same method name, but a different

number of arguments.

trap_6_4_2.java Tests the access of the overloaded instance method

with the same method name, but different types of

arguments (int and double).

trap_6_4_3.java Tests the access of the overloaded instance method

with the same method name, but different types of

arguments (int and float).

trap_6_4_4.java Tests the access of the overloaded instance method

with the same method name, but different types of

arguments (long and double).

trap_6_4_5.java Tests the access of the overloaded instance method

with the same method name, but different types of

arguments (int and double).

trap_6_4_6.java Tests the access of the overloaded instance method

with the same method name, but different types of

returns (int and double).

trap_6_4_11.java Tests the resolution of the dynamic method.

trap_6_4_12.java Tests the access of an instance method with an

index that exceeds 255.

trap_6_4_14.java Tests the access of superclass methods.

TABLE 12-34 Invokevirtual (Continued)

Test Case Description
134 picoJava-II Verification Guide • March 1999

TABLE 12-35 ldc2_w

Test Case Description

trap_6_1_3.java
trap_6_1_7.java
trap_6_2_11.java
trap_6_2_3.java
trap_6_2_7.java
trap_6_3_10.java
trap_6_3_2.java
trap_6_3_5.java
trap_6_3_8.java
trap_6_4_10.java
trap_6_4_2.java
trap_6_4_4.java
trap_6_4_6.java
trap_6_4_8.java

Test with double.

trap_6_1_4.java
trap_6_1_9.java
trap_6_2_12.java
trap_6_2_8.java
trap_6_4_5.java

Test with long.

TABLE 12-36 ldc

Test Case Description

trap_6_2_4.java Tests with int.

trap_6_1_2.java
trap_6_1_6.java
trap_6_2_10.java
trap_6_2_2.java
trap_6_2_6.java
trap_6_3_3.java
trap_6_3_4.java
trap_6_4_3.java
trap_6_4_4.java

Test with float.

trap_6_6_1.java Tests the string.

TABLE 12-37 ldc_w

Test Case Description

trap_6_7_1.java
trap_6_7_2.java

Test with int.

trap_6_7_3.java Tests with float.
Chapter 12 Traps and Interrupts 135

TABLE 12-38 Lookupswitch

Test Case Description

trap_6_8_1.java Tests with byte.

trap_6_8_2.java Tests with char.

trap_6_8_3.java Tests with short.

trap_6_8_4.java Tests with int.

TABLE 12-39 Newarray

Test Case Description

trap_6_9_1.java Tests with byte.

trap_6_9_2.java Tests with int.

trap_6_9_3.java Tests with float.

trap_6_9_4.java Tests with double.

trap_6_9_5.java Tests with long.

trap_6_9_6.java Tests with boolean.

trap_6_9_7.java Tests with char.

trap_6_9_8.java Tests with short.

TABLE 12-40 Anewarray

Test Case Description

trap_6_10_1.java Tests with an object.

TABLE 12-41 Multianewarray

Test Case Description

trap_6_11_1.java Tests with byte.

trap_6_11_2.java Tests with int.

trap_6_11_3.java Tests with float.

trap_6_11_4.java Tests with double.

trap_6_11_5.java Tests with long.

trap_6_11_6.java Tests with boolean.

trap_6_11_7.java Tests with char.
136 picoJava-II Verification Guide • March 1999

trap_6_11_8.java Tests with short.

trap_6_11_9.java Tests with object.

trap_6_11_10.java Tests with a multianewarray call with less dimension than

the declared type.

TABLE 12-42 Invokespecial

Test Case Description

trap_6_12_1.java Tests with invokenonvirtual_quick (init method).

trap_6_12_2.java
trap_6_12_3.java

Test with invokesuper_quick (other method than init).

TABLE 12-43 Invokeinterface

Test Case Description

trap_6_13_1.java Tests the access of the method for the superclass with

invokeinterface .

trap_6_13_2.java Tests with a class that implements multiple interfaces.

trap_6_13_3.java Tests with an interface that extends another interface.

trap_6_13_4.java Tests with an interface that extends multiple interfaces at a

time.

TABLE 12-44 athrow

Test Case Description

trap_6_14_1.java Tests basic athrow with try and catch statements.

trap_6_14_2.java Tests the throw runtime class.

trap_6_14_3.java Tests with throw multiple exception classes.

TABLE 12-41 Multianewarray

Test Case Description
Chapter 12 Traps and Interrupts 137

138 picoJava-II Verification Guide • March 1999

Index
C
class loader, 9

cosimulation, overview, 11

D
DSV simulation environment, 5

E
environment variables

Steam, 49

external interrupt controller, 64

F
folding monitor, 63

FPU monitor, 61

G
gen_sst_control

overview, 50

sst_control file, 51

syntax and options, 51

generation of reports, Steam, 43

H
hold generator, random, SMU, 66

I
I-Buffer monitor, 60

interrupt controller, external, 64

L
levels of verification, 1

loader for class files, 9

M
memory model, 6

microcode monitor, 62

monitor

error messages, 59

folding, 63

FPU, 61

I-Buffer, 60

microcode, 62

powerdown, 61

SMU, 60

statistics, 67

monitors

overview, 59
139

P
PLI functions, 13

powerdown monitor, 61

programming language interface (PLI), 13

R
Radify, 53 to 54

random

SMU hold generator, 66

routines for PLI functions, 13

S
simulation options, 10

SMU monitor, 60

sst_control file, 51

statistics monitor, 67

Steam

command-line options, 36 to 40

control arguments, 36

operands, 40

steam.plusargs file, 42

control arguments, 36

cosimulation arguments, 41

environment variables, 49

exit status, 50

generation of reports, 43

customization, 45

merging

coverage results, 43

statistical results, 44

midtest, 32

posttest, 33

pretest, 32

suite control file

contents, 33

format, 33

keywords, 35

syntax, 28

timeout control, 48

structure of test environment, 19

T
test environment, structure, 19

tests, directed, 2

timeout control, Steam, 48

trap handling, 9

V
VeriCov, 54 to 56

verification

DCU

address control, 99

aligner control, 99

arbiter, 98

cache-indexed flushing, 102

data cache datapath, 100

diagnostic reads and writes, 102

disabling of the data cache, 102

dispatches of load or store instructions, 103

flushing of cache comparisons, 101

invalidation of the cache, 102

miss control, 99

noncacheable

loads, 100

stores, 100

overview, 95

test coverage, 96

writeback control, 99

zeroing out of cache lines, 101

exceptions

breakpoint handlers, 123

breakpoint1 , 113

breakpoint2 , 116

data access

I/O errors, 120

memory errors, 112

emulation

FP instructions, 122

zero lines, 122

garbage collector (GC) notify traps, 126

instruction access memory errors, 112

instructions

illegal, 113

not implemented, 123

ldiv , 121

lmul , 121
140 picoJava-II Verification Guide • March 1999

lock

count overflow traps, 125

enter miss traps, 125

exit miss traps, 125

release traps, 126

lrem , 121

memory protection fault, 123

misalignment of memory addresses, 119

OPLIM traps, 120

privileged instructions, 112

runtime

arithmetic, 121

index, out-of-bound, 124

null pointers, 121

soft traps, 121

FPU

functional tests, 90

overview, 89

ICU

boot mode, 74

cache read misses, 72

I-Cache

control, 72

datapath, 74

disabling, 74

functional units, 72

invalidation, 74

instruction buffer, 73

noncacheable reads, 73

overview, 71

test coverage, 71

interrupts, nonmaskable (NMI) and maskable

(IRL), 131

IU

back-to-back instruction tests, 82

boundary condition tests, 85

folding tests, 81

functional tests, 75

microcode tests, 83

miscellaneous tests, 86

overview, 75

polymorphic instructions, 82

levels, 1

methodology, 1

reset handler, process, 25

SMU

functional tests, 105

overview, 105

strategy, 2

tools and utilities, 2

traps and interrupts

Anewarray , 136

athrow , 137

corner cases for trapping instructions, ?? to

137

Invokeinterface , 137

Invokespecial , 137

Invokestatic , 132

Invokevirtual , 133

ldc , 135

ldc_w , 135

ldc2_w , 135

Lookupswitch , 136

Multianewarray , 136

overview, 109

Setfield and Putfield , 132, 133, 136

Setstatic and Putstatic , 131
Index 141

142 picoJava-II Verification Guide • March 1999

	Preface
	1
	Overview

	1.1 Methodology
	1.2 Strategy
	1.2.1 Directed Tests
	1.2.2 Random Events
	1.3 Tools and Utilities
	2
	Verification Environment

	2.1 Simulation Environment
	2.1.1 picoJava-II Processor Models
	2.1.2 Memory Model
	2.1.3 Class Loader
	2.1.4 Trap Handling
	2.1.5 Simulation Options
	2.1.6 Runtime Classes
	2.2 RTL Verification
	2.2.1 Cosimulation
	2.2.2 RTL Monitors
	2.3 Running Simulations
	2.4 Programming Language Interface (PLI)
	2.4.1 $decaf_cm_load(classfile, needRes)
	2.4.2 $decaf_cm_read(address, data, size)
	2.4.3 $decaf_cm_write(address, data, size)
	2.4.4 $decaf_cm_dump()
	2.4.5 $decaf_cm_direct_dump(address, count, filename)
	2.4.6 $decaf_cm_load_method(classFile, index, location)
	2.4.7 $decaf_cosim(simulator)
	2.4.8 $decaf_cosim_cntl(tclCmd)
	2.4.9 $decaf_disasm(clkCount, address, trpFlag)
	2.4.10 $decaf_cosim_compare_memory_at_end()
	2.4.11 $decaf_load_traphandlers()
	2.4.12 $decaf_tam_start(simulator)
	2.4.13 $decaf_tam_memread(address, data, size)
	2.4.14 $decaf_tam_memwrite(address, data, size)
	2.4.15 $decaf_tam_exit()
	2.4.16 $decaf_tam_poll(address, data, size, result)
	2.4.17 $decaf_tam_intr(irl)
	3
	Test Environment

	3.1 RT Tests
	3.1.1 Examples
	3.1.2 Standard Files
	3.1.3 Compilation Directives
	3.1.4 make Command
	3.2 RC Tests
	3.2.1 Memory Map
	3.2.2 Reset Process
	4
	Test Scripts

	4.1 Steam Script Overview
	4.1.1 Syntax
	4.1.2 Before Running Steam
	4.1.3 Steam Examples
	4.2 Steam Operation
	4.2.1 Execution and Process
	4.2.2 Suite Control File
	4.2.3 Control Arguments
	4.2.4 Operands
	4.2.5 Cosimulation Arguments
	4.2.6 Test Coverage and Statistics
	4.2.7 Log Files
	4.2.8 Timeout Control
	4.2.9 Environment Variables
	4.2.10 Exit Status
	4.3 gen_sst_control Script
	4.3.1 sst_control File
	4.3.2 Syntax and Options
	5
	External Tools

	5.1 Radify
	To Run Radify
	To Run Simulation with VCS
	To Run Simulation with Verilog-XL
	5.2 VeriCov
	5.2.1 Key Features
	5.2.2 Build Script
	5.2.3 Simulation
	5.2.4 Coverage Report
	5.2.5 Coverage Numbers
	6
	Monitors

	6.1 Overview
	6.2 I-Buffer Monitor
	6.3 SMU Monitor
	6.4 FPU Monitor
	6.5 Powerdown Monitor
	6.6 Microcode Monitor
	6.7 Folding Monitor
	6.8 External Interrupt Controller
	6.9 Random SMU Hold Generator
	6.10 Statistics Monitor
	6.11 Activity Monitor
	7
	Verification of the Instruction Cache Unit (ICU)

	7.1 Tests for Basic Functions
	7.2 Tests for Instruction Cache Functional Units
	7.2.1 I-Cache Control (ic_cntl)
	7.2.2 Cache Read Misses
	7.2.3 Noncacheable (NC) Reads
	7.3 Tests for Instruction Buffer (I-Buffer)
	7.3.1 I-Buffer Control (ibuf_cntl)
	7.3.2 I-Cache Datapath (icu_dpath)
	7.3.3 Disabled I-Cache Instructions
	7.3.4 Invalidation of the Cache
	7.3.5 Boot Mode
	8
	Verification of the Integer Unit (IU)

	8.1 Functional Tests
	8.2 Tests for Folding Combinations
	8.3 Tests for Back-to-Back Instructions
	8.4 Tests for Polymorphic Instructions
	8.4.1 Local Variable and Object Field Load or Store
	8.4.2 Microcode Instructions
	8.4.3 Boundary Conditions
	8.5 Miscellaneous Tests
	9
	Verification of the Floating Point Unit (FPU)

	9.1 Overview
	9.2 Functional Tests
	10
	Verification of the Data Cache Unit (DCU)

	10.1 Test Coverage
	10.2 Functional Tests
	10.2.1 Arbiter
	10.2.2 Address Control
	10.2.3 Aligner Control
	10.2.4 Miss Control
	10.2.5 Writeback Control
	10.2.6 Data Cache Datapath
	10.3 Tests for Noncacheable Loads
	10.4 Tests for Noncacheable Stores
	10.5 Tests for Zeroing Out of Cache Lines
	10.6 Tests for Flushing of Cache Comparisons
	10.7 Tests for Cache-Indexed Flushing
	10.8 Tests for Disabling of the Data Cache
	10.9 Tests for Diagnostic Reads and Writes
	10.10 Tests for Invalidation of the Cache
	10.11 Tests for Dispatches of Load or Store Instructions
	10.12 Other Data Cache Tests
	11
	Verification of the Stack Manager Unit (SMU)

	12
	Traps and Interrupts

	12.1 Exception Handlers
	12.2 Traps and Exceptions
	12.2.1 Power-On Reset (POR)
	12.2.2 Asynchronous Error
	12.2.3 Data Access Memory Errors
	12.2.4 Instruction Access Memory Errors
	12.2.5 Privileged Instructions
	12.2.6 Illegal Instructions
	12.2.7 breakpoint1
	12.2.8 breakpoint2
	12.2.9 Misalignment of Memory Addresses
	12.2.10 Data Access I/O Errors
	12.2.11 OPLIM Traps
	12.2.12 Soft Traps
	12.2.13 ldiv
	12.2.14 lmul
	12.2.15 lrem
	12.2.16 Runtime Arithmetic
	12.2.17 Runtime Null Pointers
	12.2.18 Emulation of Zero Lines
	12.2.19 Emulation of FP Instructions
	12.2.20 Breakpoint Handlers
	12.2.21 Unimplemented Instructions
	12.2.22 Memory Protection Fault
	12.2.23 Out-of-Bounds Runtime Index
	12.2.24 Lock Count Overflow Traps
	12.2.25 Lock Enter Miss Traps
	12.2.26 Lock Exit Miss Traps
	12.2.27 Lock Release Traps
	12.2.28 Garbage Collection Notify Traps
	12.2.29 Trap Priority Tests for Two Exceptions
	12.2.30 Trap Priority Tests with Three Exceptions
	12.3 Interrupts
	12.4 Corner Cases for Trapping Instructions
	Index

